Cargando…
Aerosolization flux, bio-products, and dispersal capacities in the freshwater microalga Limnomonas gaiensis (Chlorophyceae)
Little is known on the spreading capacities of Limnomonas gaiensis across freshwater lakes in Northern Europe. In this study, we show that the species could successfully be aerosolized from water sources by bubble bursting (2-40 particles.cm(−3)), irrespectively of its density in the water source or...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400582/ https://www.ncbi.nlm.nih.gov/pubmed/37537210 http://dx.doi.org/10.1038/s42003-023-05183-5 |
Sumario: | Little is known on the spreading capacities of Limnomonas gaiensis across freshwater lakes in Northern Europe. In this study, we show that the species could successfully be aerosolized from water sources by bubble bursting (2-40 particles.cm(−3)), irrespectively of its density in the water source or of the jet velocity used to simulate wave breaking. The species viability was impacted by both water turbulences and aerosolization. The survival rate of emitted cells was low, strain-specific, and differently impacted by bubble busting processes. The entity “microalga and bionts” could produce ethanol, and actively nucleate ice (principally ≤−18 °C) mediated soluble ice nucleation active proteins, thereby potentially impacting smog and cloud formation. Moreover, smallest strains could better cope with applied stressors. Survival to short-term exposure to temperatures down to −21 °C and freezing events further suggest that L. gaiensis could be air dispersed and contribute to their deposition. |
---|