Cargando…
Machine learning-based technique for gain and resonance prediction of mid band 5G Yagi antenna
In this study, we present our findings from investigating the use of a machine learning (ML) technique to improve the performance of Quasi-Yagi–Uda antennas operating in the n78 band for 5G applications. This research study investigates several techniques, such as simulation, measurement, and an RLC...
Autores principales: | Haque, Md. Ashraful, Rahman, Md Afzalur, Al-Bawri, Samir Salem, Yusoff, Zubaida, Sharker, Adiba Haque, Abdulkawi, Wazie M., Saha, Dipon, Paul, Liton Chandra, Zakariya, M. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400634/ https://www.ncbi.nlm.nih.gov/pubmed/37537201 http://dx.doi.org/10.1038/s41598-023-39730-1 |
Ejemplares similares
-
Machine learning-based technique for resonance and directivity prediction of UMTS LTE band quasi Yagi antenna
por: Haque, Md. Ashraful, et al.
Publicado: (2023) -
Design, Challenges and Developments for 5G Massive MIMO Antenna Systems at Sub 6-GHz Band: A Review
por: Ibrahim, Sura Khalil, et al.
Publicado: (2023) -
Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands
por: Abdulkawi, Wazie M., et al.
Publicado: (2021) -
Electrically-driven Yagi-Uda antennas for light
por: Kullock, René, et al.
Publicado: (2020) -
Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique
por: Rahaman, Imteaz, et al.
Publicado: (2022)