Cargando…

Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis

Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (G...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Donglin, Blee, Alexandra M., Zhang, Jianong, Pan, Yunqian, Becker, Nicole A., Maher, L. James, Jimenez, Rafael, Wang, Liguo, Huang, Haojie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400651/
https://www.ncbi.nlm.nih.gov/pubmed/37537199
http://dx.doi.org/10.1038/s41467-023-40352-4
_version_ 1785084491346214912
author Ding, Donglin
Blee, Alexandra M.
Zhang, Jianong
Pan, Yunqian
Becker, Nicole A.
Maher, L. James
Jimenez, Rafael
Wang, Liguo
Huang, Haojie
author_facet Ding, Donglin
Blee, Alexandra M.
Zhang, Jianong
Pan, Yunqian
Becker, Nicole A.
Maher, L. James
Jimenez, Rafael
Wang, Liguo
Huang, Haojie
author_sort Ding, Donglin
collection PubMed
description Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.
format Online
Article
Text
id pubmed-10400651
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104006512023-08-05 Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis Ding, Donglin Blee, Alexandra M. Zhang, Jianong Pan, Yunqian Becker, Nicole A. Maher, L. James Jimenez, Rafael Wang, Liguo Huang, Haojie Nat Commun Article Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa. Nature Publishing Group UK 2023-08-03 /pmc/articles/PMC10400651/ /pubmed/37537199 http://dx.doi.org/10.1038/s41467-023-40352-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ding, Donglin
Blee, Alexandra M.
Zhang, Jianong
Pan, Yunqian
Becker, Nicole A.
Maher, L. James
Jimenez, Rafael
Wang, Liguo
Huang, Haojie
Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
title Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
title_full Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
title_fullStr Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
title_full_unstemmed Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
title_short Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
title_sort gain-of-function mutant p53 together with erg proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400651/
https://www.ncbi.nlm.nih.gov/pubmed/37537199
http://dx.doi.org/10.1038/s41467-023-40352-4
work_keys_str_mv AT dingdonglin gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT bleealexandram gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT zhangjianong gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT panyunqian gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT beckernicolea gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT maherljames gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT jimenezrafael gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT wangliguo gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis
AT huanghaojie gainoffunctionmutantp53togetherwithergprotooncogenedriveprostatecancerbybetacateninactivationandpyrimidinesynthesis