Cargando…

Functional annotation of proteins for signaling network inference in non-model species

Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network...

Descripción completa

Detalles Bibliográficos
Autores principales: Van den Broeck, Lisa, Bhosale, Dinesh Kiran, Song, Kuncheng, Fonseca de Lima, Cássio Flavio, Ashley, Michael, Zhu, Tingting, Zhu, Shanshuo, Van De Cotte, Brigitte, Neyt, Pia, Ortiz, Anna C., Sikes, Tiffany R., Aper, Jonas, Lootens, Peter, Locke, Anna M., De Smet, Ive, Sozzani, Rosangela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400656/
https://www.ncbi.nlm.nih.gov/pubmed/37537196
http://dx.doi.org/10.1038/s41467-023-40365-z
_version_ 1785084492305661952
author Van den Broeck, Lisa
Bhosale, Dinesh Kiran
Song, Kuncheng
Fonseca de Lima, Cássio Flavio
Ashley, Michael
Zhu, Tingting
Zhu, Shanshuo
Van De Cotte, Brigitte
Neyt, Pia
Ortiz, Anna C.
Sikes, Tiffany R.
Aper, Jonas
Lootens, Peter
Locke, Anna M.
De Smet, Ive
Sozzani, Rosangela
author_facet Van den Broeck, Lisa
Bhosale, Dinesh Kiran
Song, Kuncheng
Fonseca de Lima, Cássio Flavio
Ashley, Michael
Zhu, Tingting
Zhu, Shanshuo
Van De Cotte, Brigitte
Neyt, Pia
Ortiz, Anna C.
Sikes, Tiffany R.
Aper, Jonas
Lootens, Peter
Locke, Anna M.
De Smet, Ive
Sozzani, Rosangela
author_sort Van den Broeck, Lisa
collection PubMed
description Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence. We annotate kinases and phosphatases in Glycine max. We use the functional annotations from our neural network, Bayesian inference principles, and high resolution phosphoproteomics to infer phosphorylation signaling cascades in soybean exposed to cold, and identify Glyma.10G173000 (TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Importantly, the signaling cascade inference does not rely upon known kinase motifs or interaction data, enabling de novo identification of kinase-substrate interactions. Conclusively, our neural network shows generalization and scalability, as such we extend our predictions to Oryza sativa, Zea mays, Sorghum bicolor, and Triticum aestivum. Taken together, we develop a signaling inference approach for non-model species leveraging our predicted kinases and phosphatases.
format Online
Article
Text
id pubmed-10400656
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104006562023-08-05 Functional annotation of proteins for signaling network inference in non-model species Van den Broeck, Lisa Bhosale, Dinesh Kiran Song, Kuncheng Fonseca de Lima, Cássio Flavio Ashley, Michael Zhu, Tingting Zhu, Shanshuo Van De Cotte, Brigitte Neyt, Pia Ortiz, Anna C. Sikes, Tiffany R. Aper, Jonas Lootens, Peter Locke, Anna M. De Smet, Ive Sozzani, Rosangela Nat Commun Article Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence. We annotate kinases and phosphatases in Glycine max. We use the functional annotations from our neural network, Bayesian inference principles, and high resolution phosphoproteomics to infer phosphorylation signaling cascades in soybean exposed to cold, and identify Glyma.10G173000 (TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Importantly, the signaling cascade inference does not rely upon known kinase motifs or interaction data, enabling de novo identification of kinase-substrate interactions. Conclusively, our neural network shows generalization and scalability, as such we extend our predictions to Oryza sativa, Zea mays, Sorghum bicolor, and Triticum aestivum. Taken together, we develop a signaling inference approach for non-model species leveraging our predicted kinases and phosphatases. Nature Publishing Group UK 2023-08-03 /pmc/articles/PMC10400656/ /pubmed/37537196 http://dx.doi.org/10.1038/s41467-023-40365-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Van den Broeck, Lisa
Bhosale, Dinesh Kiran
Song, Kuncheng
Fonseca de Lima, Cássio Flavio
Ashley, Michael
Zhu, Tingting
Zhu, Shanshuo
Van De Cotte, Brigitte
Neyt, Pia
Ortiz, Anna C.
Sikes, Tiffany R.
Aper, Jonas
Lootens, Peter
Locke, Anna M.
De Smet, Ive
Sozzani, Rosangela
Functional annotation of proteins for signaling network inference in non-model species
title Functional annotation of proteins for signaling network inference in non-model species
title_full Functional annotation of proteins for signaling network inference in non-model species
title_fullStr Functional annotation of proteins for signaling network inference in non-model species
title_full_unstemmed Functional annotation of proteins for signaling network inference in non-model species
title_short Functional annotation of proteins for signaling network inference in non-model species
title_sort functional annotation of proteins for signaling network inference in non-model species
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400656/
https://www.ncbi.nlm.nih.gov/pubmed/37537196
http://dx.doi.org/10.1038/s41467-023-40365-z
work_keys_str_mv AT vandenbroecklisa functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT bhosaledineshkiran functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT songkuncheng functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT fonsecadelimacassioflavio functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT ashleymichael functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT zhutingting functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT zhushanshuo functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT vandecottebrigitte functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT neytpia functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT ortizannac functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT sikestiffanyr functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT aperjonas functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT lootenspeter functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT lockeannam functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT desmetive functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies
AT sozzanirosangela functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies