Cargando…
Functional annotation of proteins for signaling network inference in non-model species
Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400656/ https://www.ncbi.nlm.nih.gov/pubmed/37537196 http://dx.doi.org/10.1038/s41467-023-40365-z |
_version_ | 1785084492305661952 |
---|---|
author | Van den Broeck, Lisa Bhosale, Dinesh Kiran Song, Kuncheng Fonseca de Lima, Cássio Flavio Ashley, Michael Zhu, Tingting Zhu, Shanshuo Van De Cotte, Brigitte Neyt, Pia Ortiz, Anna C. Sikes, Tiffany R. Aper, Jonas Lootens, Peter Locke, Anna M. De Smet, Ive Sozzani, Rosangela |
author_facet | Van den Broeck, Lisa Bhosale, Dinesh Kiran Song, Kuncheng Fonseca de Lima, Cássio Flavio Ashley, Michael Zhu, Tingting Zhu, Shanshuo Van De Cotte, Brigitte Neyt, Pia Ortiz, Anna C. Sikes, Tiffany R. Aper, Jonas Lootens, Peter Locke, Anna M. De Smet, Ive Sozzani, Rosangela |
author_sort | Van den Broeck, Lisa |
collection | PubMed |
description | Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence. We annotate kinases and phosphatases in Glycine max. We use the functional annotations from our neural network, Bayesian inference principles, and high resolution phosphoproteomics to infer phosphorylation signaling cascades in soybean exposed to cold, and identify Glyma.10G173000 (TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Importantly, the signaling cascade inference does not rely upon known kinase motifs or interaction data, enabling de novo identification of kinase-substrate interactions. Conclusively, our neural network shows generalization and scalability, as such we extend our predictions to Oryza sativa, Zea mays, Sorghum bicolor, and Triticum aestivum. Taken together, we develop a signaling inference approach for non-model species leveraging our predicted kinases and phosphatases. |
format | Online Article Text |
id | pubmed-10400656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104006562023-08-05 Functional annotation of proteins for signaling network inference in non-model species Van den Broeck, Lisa Bhosale, Dinesh Kiran Song, Kuncheng Fonseca de Lima, Cássio Flavio Ashley, Michael Zhu, Tingting Zhu, Shanshuo Van De Cotte, Brigitte Neyt, Pia Ortiz, Anna C. Sikes, Tiffany R. Aper, Jonas Lootens, Peter Locke, Anna M. De Smet, Ive Sozzani, Rosangela Nat Commun Article Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence. We annotate kinases and phosphatases in Glycine max. We use the functional annotations from our neural network, Bayesian inference principles, and high resolution phosphoproteomics to infer phosphorylation signaling cascades in soybean exposed to cold, and identify Glyma.10G173000 (TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Importantly, the signaling cascade inference does not rely upon known kinase motifs or interaction data, enabling de novo identification of kinase-substrate interactions. Conclusively, our neural network shows generalization and scalability, as such we extend our predictions to Oryza sativa, Zea mays, Sorghum bicolor, and Triticum aestivum. Taken together, we develop a signaling inference approach for non-model species leveraging our predicted kinases and phosphatases. Nature Publishing Group UK 2023-08-03 /pmc/articles/PMC10400656/ /pubmed/37537196 http://dx.doi.org/10.1038/s41467-023-40365-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Van den Broeck, Lisa Bhosale, Dinesh Kiran Song, Kuncheng Fonseca de Lima, Cássio Flavio Ashley, Michael Zhu, Tingting Zhu, Shanshuo Van De Cotte, Brigitte Neyt, Pia Ortiz, Anna C. Sikes, Tiffany R. Aper, Jonas Lootens, Peter Locke, Anna M. De Smet, Ive Sozzani, Rosangela Functional annotation of proteins for signaling network inference in non-model species |
title | Functional annotation of proteins for signaling network inference in non-model species |
title_full | Functional annotation of proteins for signaling network inference in non-model species |
title_fullStr | Functional annotation of proteins for signaling network inference in non-model species |
title_full_unstemmed | Functional annotation of proteins for signaling network inference in non-model species |
title_short | Functional annotation of proteins for signaling network inference in non-model species |
title_sort | functional annotation of proteins for signaling network inference in non-model species |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400656/ https://www.ncbi.nlm.nih.gov/pubmed/37537196 http://dx.doi.org/10.1038/s41467-023-40365-z |
work_keys_str_mv | AT vandenbroecklisa functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT bhosaledineshkiran functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT songkuncheng functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT fonsecadelimacassioflavio functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT ashleymichael functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT zhutingting functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT zhushanshuo functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT vandecottebrigitte functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT neytpia functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT ortizannac functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT sikestiffanyr functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT aperjonas functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT lootenspeter functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT lockeannam functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT desmetive functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies AT sozzanirosangela functionalannotationofproteinsforsignalingnetworkinferenceinnonmodelspecies |