Cargando…
Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence
Neuroimaging‐based prediction methods for intelligence have seen a rapid development. Among different neuroimaging modalities, prediction using functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, with limited investigations on the merits o...
Autores principales: | Li, Yang, Ma, Xin, Sunderraman, Raj, Ji, Shihao, Kundu, Suprateek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400788/ https://www.ncbi.nlm.nih.gov/pubmed/37466292 http://dx.doi.org/10.1002/hbm.26415 |
Ejemplares similares
-
Integrative Bayesian tensor regression for imaging genetics applications
por: Liu, Yajie, et al.
Publicado: (2023) -
Magnetic resonance imaging pattern variability in dysferlinopathy
por: Bardakov, Sergey N., et al.
Publicado: (2021) -
Improved parallel magnetic resonance imaging reconstruction with multiple variable density sampling
por: Sheng, Jinhua, et al.
Publicado: (2021) -
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
por: Kundu, Suprateek, et al.
Publicado: (2018) -
Temporal changes in magnetic resonance imaging in the mdx mouse
por: Pratt, Stephen JP, et al.
Publicado: (2013)