Cargando…

Establishment and characterization of an SV40 immortalized chicken intestinal epithelial cell line

Primary chicken intestinal epithelial cells or 3D enteroids are a powerful tool to study the different biological mechanisms that occur in the chicken intestine. Unfortunately, they are not ideal for large-scale screening or long-term studies due to their short lifespan. Moreover, they require expen...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghiselli, Federico, Felici, Martina, Piva, Andrea, Grilli, Ester
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400971/
https://www.ncbi.nlm.nih.gov/pubmed/37517361
http://dx.doi.org/10.1016/j.psj.2023.102864
Descripción
Sumario:Primary chicken intestinal epithelial cells or 3D enteroids are a powerful tool to study the different biological mechanisms that occur in the chicken intestine. Unfortunately, they are not ideal for large-scale screening or long-term studies due to their short lifespan. Moreover, they require expensive culture media, coatings, or the usage of live embryos for each isolation. The aim of this study was to establish and characterize an immortalized chicken intestinal epithelial cell line to help the study of host–pathogen interactions in poultry. This cell line was established by transducing into primary chicken enterocytes the SV40 large-T antigen through a lentiviral vector. The transduced cells grew without changes up to 40 passages maintaining, after a differentiation phase of 48 h with epidermal growth factor, the biological properties of mature enterocytes such as alkaline phosphatase activity and tight junction formation. Immortalized enterocytes were able to generate a cytokine response during an inflammatory challenge, and showed to be susceptible to Eimeria tenella sporozoites invasion and generate a proper immune response to parasitic and lipopolysaccharide (Escherichia coli) stimulation. This immortalized cell line could be a cost-effective and easy-to-maintain model for all the public health, food safety, or research and pharmaceutical laboratories that study host–pathogen interactions, foodborne pathogens, and food or feed science in vitro.