Cargando…

Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation

Manipulating quantum states through light–matter interactions has been actively pursued in two-dimensional materials research. Significant progress has been made toward the optical control of the valley degrees of freedom in semiconducting monolayer transition-metal dichalcogenides, based on doubly...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruan, Jiawei, Li, Zhenglu, Ong, Chin Shen, Louie, Steven G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401001/
https://www.ncbi.nlm.nih.gov/pubmed/37490531
http://dx.doi.org/10.1073/pnas.2307611120
_version_ 1785084561325031424
author Ruan, Jiawei
Li, Zhenglu
Ong, Chin Shen
Louie, Steven G.
author_facet Ruan, Jiawei
Li, Zhenglu
Ong, Chin Shen
Louie, Steven G.
author_sort Ruan, Jiawei
collection PubMed
description Manipulating quantum states through light–matter interactions has been actively pursued in two-dimensional materials research. Significant progress has been made toward the optical control of the valley degrees of freedom in semiconducting monolayer transition-metal dichalcogenides, based on doubly degenerate excitons from their two distinct valleys in reciprocal space. Here, we introduce a type of optically controllable doubly degenerate exciton states that come from a single valley, dubbed as single-valley exciton doublet (SVXD) states. They are unique in that their constituent holes originate from the same valence band, making possible the direct optical control of the spin structure of the excited constituent electrons. Combining ab initio GW plus Bethe–Salpeter equation (GW-BSE) calculations and a theoretical analysis method, we demonstrate such SVXD in substrate-supported monolayer bismuthene—which has been successfully grown using molecular beam epitaxy. In each of the two distinct valleys in the Brillouin zone, strong spin–orbit coupling and [Formula: see text] symmetry lead to a pair of degenerate 1s exciton states (the SVXD states) with opposite spin configurations. Any coherent linear combinations of the SVXD in a single valley can be excited by light with a specific polarization, enabling full manipulation of their internal spin configurations. In particular, a controllable net spin magnetization can be generated through light excitation. Our findings open routes to control quantum degrees of freedom, paving the way for applications in spintronics and quantum information science.
format Online
Article
Text
id pubmed-10401001
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-104010012023-08-05 Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation Ruan, Jiawei Li, Zhenglu Ong, Chin Shen Louie, Steven G. Proc Natl Acad Sci U S A Physical Sciences Manipulating quantum states through light–matter interactions has been actively pursued in two-dimensional materials research. Significant progress has been made toward the optical control of the valley degrees of freedom in semiconducting monolayer transition-metal dichalcogenides, based on doubly degenerate excitons from their two distinct valleys in reciprocal space. Here, we introduce a type of optically controllable doubly degenerate exciton states that come from a single valley, dubbed as single-valley exciton doublet (SVXD) states. They are unique in that their constituent holes originate from the same valence band, making possible the direct optical control of the spin structure of the excited constituent electrons. Combining ab initio GW plus Bethe–Salpeter equation (GW-BSE) calculations and a theoretical analysis method, we demonstrate such SVXD in substrate-supported monolayer bismuthene—which has been successfully grown using molecular beam epitaxy. In each of the two distinct valleys in the Brillouin zone, strong spin–orbit coupling and [Formula: see text] symmetry lead to a pair of degenerate 1s exciton states (the SVXD states) with opposite spin configurations. Any coherent linear combinations of the SVXD in a single valley can be excited by light with a specific polarization, enabling full manipulation of their internal spin configurations. In particular, a controllable net spin magnetization can be generated through light excitation. Our findings open routes to control quantum degrees of freedom, paving the way for applications in spintronics and quantum information science. National Academy of Sciences 2023-07-25 2023-08-01 /pmc/articles/PMC10401001/ /pubmed/37490531 http://dx.doi.org/10.1073/pnas.2307611120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Ruan, Jiawei
Li, Zhenglu
Ong, Chin Shen
Louie, Steven G.
Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
title Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
title_full Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
title_fullStr Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
title_full_unstemmed Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
title_short Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
title_sort optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401001/
https://www.ncbi.nlm.nih.gov/pubmed/37490531
http://dx.doi.org/10.1073/pnas.2307611120
work_keys_str_mv AT ruanjiawei opticallycontrolledsinglevalleyexcitondoubletstateswithtunableinternalspinstructuresandspinmagnetizationgeneration
AT lizhenglu opticallycontrolledsinglevalleyexcitondoubletstateswithtunableinternalspinstructuresandspinmagnetizationgeneration
AT ongchinshen opticallycontrolledsinglevalleyexcitondoubletstateswithtunableinternalspinstructuresandspinmagnetizationgeneration
AT louiesteveng opticallycontrolledsinglevalleyexcitondoubletstateswithtunableinternalspinstructuresandspinmagnetizationgeneration