Cargando…
Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glut...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401073/ https://www.ncbi.nlm.nih.gov/pubmed/37262067 http://dx.doi.org/10.1158/2159-8290.CD-22-0976 |
_version_ | 1785084573240000512 |
---|---|
author | Gopal, Raj K. Vantaku, Venkata R. Panda, Apekshya Reimer, Bryn Rath, Sneha To, Tsz-Leung Fisch, Adam S. Cetinbas, Murat Livneh, Maia Calcaterra, Michael J. Gigliotti, Benjamin J. Pierce, Kerry A. Clish, Clary B. Dias-Santagata, Dora Sadow, Peter M. Wirth, Lori J. Daniels, Gilbert H. Sadreyev, Ruslan I. Calvo, Sarah E. Parangi, Sareh Mootha, Vamsi K. |
author_facet | Gopal, Raj K. Vantaku, Venkata R. Panda, Apekshya Reimer, Bryn Rath, Sneha To, Tsz-Leung Fisch, Adam S. Cetinbas, Murat Livneh, Maia Calcaterra, Michael J. Gigliotti, Benjamin J. Pierce, Kerry A. Clish, Clary B. Dias-Santagata, Dora Sadow, Peter M. Wirth, Lori J. Daniels, Gilbert H. Sadreyev, Ruslan I. Calvo, Sarah E. Parangi, Sareh Mootha, Vamsi K. |
author_sort | Gopal, Raj K. |
collection | PubMed |
description | Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR–Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR–Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749 |
format | Online Article Text |
id | pubmed-10401073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-104010732023-08-05 Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma Gopal, Raj K. Vantaku, Venkata R. Panda, Apekshya Reimer, Bryn Rath, Sneha To, Tsz-Leung Fisch, Adam S. Cetinbas, Murat Livneh, Maia Calcaterra, Michael J. Gigliotti, Benjamin J. Pierce, Kerry A. Clish, Clary B. Dias-Santagata, Dora Sadow, Peter M. Wirth, Lori J. Daniels, Gilbert H. Sadreyev, Ruslan I. Calvo, Sarah E. Parangi, Sareh Mootha, Vamsi K. Cancer Discov Research Articles Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR–Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR–Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749 American Association for Cancer Research 2023-08-04 2023-06-01 /pmc/articles/PMC10401073/ /pubmed/37262067 http://dx.doi.org/10.1158/2159-8290.CD-22-0976 Text en ©2023 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by/4.0/This open access article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. |
spellingShingle | Research Articles Gopal, Raj K. Vantaku, Venkata R. Panda, Apekshya Reimer, Bryn Rath, Sneha To, Tsz-Leung Fisch, Adam S. Cetinbas, Murat Livneh, Maia Calcaterra, Michael J. Gigliotti, Benjamin J. Pierce, Kerry A. Clish, Clary B. Dias-Santagata, Dora Sadow, Peter M. Wirth, Lori J. Daniels, Gilbert H. Sadreyev, Ruslan I. Calvo, Sarah E. Parangi, Sareh Mootha, Vamsi K. Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma |
title | Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma |
title_full | Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma |
title_fullStr | Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma |
title_full_unstemmed | Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma |
title_short | Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma |
title_sort | effectors enabling adaptation to mitochondrial complex i loss in hürthle cell carcinoma |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401073/ https://www.ncbi.nlm.nih.gov/pubmed/37262067 http://dx.doi.org/10.1158/2159-8290.CD-22-0976 |
work_keys_str_mv | AT gopalrajk effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT vantakuvenkatar effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT pandaapekshya effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT reimerbryn effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT rathsneha effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT totszleung effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT fischadams effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT cetinbasmurat effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT livnehmaia effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT calcaterramichaelj effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT gigliottibenjaminj effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT piercekerrya effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT clishclaryb effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT diassantagatadora effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT sadowpeterm effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT wirthlorij effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT danielsgilberth effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT sadreyevruslani effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT calvosarahe effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT parangisareh effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma AT moothavamsik effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma |