Cargando…

Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma

Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glut...

Descripción completa

Detalles Bibliográficos
Autores principales: Gopal, Raj K., Vantaku, Venkata R., Panda, Apekshya, Reimer, Bryn, Rath, Sneha, To, Tsz-Leung, Fisch, Adam S., Cetinbas, Murat, Livneh, Maia, Calcaterra, Michael J., Gigliotti, Benjamin J., Pierce, Kerry A., Clish, Clary B., Dias-Santagata, Dora, Sadow, Peter M., Wirth, Lori J., Daniels, Gilbert H., Sadreyev, Ruslan I., Calvo, Sarah E., Parangi, Sareh, Mootha, Vamsi K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401073/
https://www.ncbi.nlm.nih.gov/pubmed/37262067
http://dx.doi.org/10.1158/2159-8290.CD-22-0976
_version_ 1785084573240000512
author Gopal, Raj K.
Vantaku, Venkata R.
Panda, Apekshya
Reimer, Bryn
Rath, Sneha
To, Tsz-Leung
Fisch, Adam S.
Cetinbas, Murat
Livneh, Maia
Calcaterra, Michael J.
Gigliotti, Benjamin J.
Pierce, Kerry A.
Clish, Clary B.
Dias-Santagata, Dora
Sadow, Peter M.
Wirth, Lori J.
Daniels, Gilbert H.
Sadreyev, Ruslan I.
Calvo, Sarah E.
Parangi, Sareh
Mootha, Vamsi K.
author_facet Gopal, Raj K.
Vantaku, Venkata R.
Panda, Apekshya
Reimer, Bryn
Rath, Sneha
To, Tsz-Leung
Fisch, Adam S.
Cetinbas, Murat
Livneh, Maia
Calcaterra, Michael J.
Gigliotti, Benjamin J.
Pierce, Kerry A.
Clish, Clary B.
Dias-Santagata, Dora
Sadow, Peter M.
Wirth, Lori J.
Daniels, Gilbert H.
Sadreyev, Ruslan I.
Calvo, Sarah E.
Parangi, Sareh
Mootha, Vamsi K.
author_sort Gopal, Raj K.
collection PubMed
description Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR–Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR–Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749
format Online
Article
Text
id pubmed-10401073
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for Cancer Research
record_format MEDLINE/PubMed
spelling pubmed-104010732023-08-05 Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma Gopal, Raj K. Vantaku, Venkata R. Panda, Apekshya Reimer, Bryn Rath, Sneha To, Tsz-Leung Fisch, Adam S. Cetinbas, Murat Livneh, Maia Calcaterra, Michael J. Gigliotti, Benjamin J. Pierce, Kerry A. Clish, Clary B. Dias-Santagata, Dora Sadow, Peter M. Wirth, Lori J. Daniels, Gilbert H. Sadreyev, Ruslan I. Calvo, Sarah E. Parangi, Sareh Mootha, Vamsi K. Cancer Discov Research Articles Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR–Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR–Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749 American Association for Cancer Research 2023-08-04 2023-06-01 /pmc/articles/PMC10401073/ /pubmed/37262067 http://dx.doi.org/10.1158/2159-8290.CD-22-0976 Text en ©2023 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by/4.0/This open access article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
spellingShingle Research Articles
Gopal, Raj K.
Vantaku, Venkata R.
Panda, Apekshya
Reimer, Bryn
Rath, Sneha
To, Tsz-Leung
Fisch, Adam S.
Cetinbas, Murat
Livneh, Maia
Calcaterra, Michael J.
Gigliotti, Benjamin J.
Pierce, Kerry A.
Clish, Clary B.
Dias-Santagata, Dora
Sadow, Peter M.
Wirth, Lori J.
Daniels, Gilbert H.
Sadreyev, Ruslan I.
Calvo, Sarah E.
Parangi, Sareh
Mootha, Vamsi K.
Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
title Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
title_full Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
title_fullStr Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
title_full_unstemmed Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
title_short Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma
title_sort effectors enabling adaptation to mitochondrial complex i loss in hürthle cell carcinoma
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401073/
https://www.ncbi.nlm.nih.gov/pubmed/37262067
http://dx.doi.org/10.1158/2159-8290.CD-22-0976
work_keys_str_mv AT gopalrajk effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT vantakuvenkatar effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT pandaapekshya effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT reimerbryn effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT rathsneha effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT totszleung effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT fischadams effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT cetinbasmurat effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT livnehmaia effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT calcaterramichaelj effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT gigliottibenjaminj effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT piercekerrya effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT clishclaryb effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT diassantagatadora effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT sadowpeterm effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT wirthlorij effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT danielsgilberth effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT sadreyevruslani effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT calvosarahe effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT parangisareh effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma
AT moothavamsik effectorsenablingadaptationtomitochondrialcomplexilossinhurthlecellcarcinoma