Cargando…

Macroscopic Quantum Tunneling of a Topological Ferromagnet

The recent advent of topological states of matter spawned many significant discoveries. The quantum anomalous Hall (QAH) effect is a prime example due to its potential for applications in quantum metrology, as well as its influence on fundamental research into the underlying topological and magnetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Fijalkowski, Kajetan M., Liu, Nan, Mandal, Pankaj, Schreyeck, Steffen, Brunner, Karl, Gould, Charles, Molenkamp, Laurens W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401085/
https://www.ncbi.nlm.nih.gov/pubmed/37314152
http://dx.doi.org/10.1002/advs.202303165
_version_ 1785084576227393536
author Fijalkowski, Kajetan M.
Liu, Nan
Mandal, Pankaj
Schreyeck, Steffen
Brunner, Karl
Gould, Charles
Molenkamp, Laurens W.
author_facet Fijalkowski, Kajetan M.
Liu, Nan
Mandal, Pankaj
Schreyeck, Steffen
Brunner, Karl
Gould, Charles
Molenkamp, Laurens W.
author_sort Fijalkowski, Kajetan M.
collection PubMed
description The recent advent of topological states of matter spawned many significant discoveries. The quantum anomalous Hall (QAH) effect is a prime example due to its potential for applications in quantum metrology, as well as its influence on fundamental research into the underlying topological and magnetic states and into axion electrodynamics. Here, electronic transport studies on a (V,Bi,Sb)(2)Te(3) ferromagnetic topological insulator nanostructure in the QAH regime are presented. This allows access to the dynamics of an individual ferromagnetic domain. The domain size is estimated to be in the 50–100 nm range. Telegraph noise resulting from the magnetization fluctuations of this domain is observed in the Hall signal. Careful analysis of the influence of temperature and external magnetic field on the domain switching statistics provides evidence for quantum tunneling (QT) of magnetization in a macrospin state. This ferromagnetic macrospin is not only the largest magnetic object in which QT is observed, but also the first observation of the effect in a topological state of matter.
format Online
Article
Text
id pubmed-10401085
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104010852023-08-05 Macroscopic Quantum Tunneling of a Topological Ferromagnet Fijalkowski, Kajetan M. Liu, Nan Mandal, Pankaj Schreyeck, Steffen Brunner, Karl Gould, Charles Molenkamp, Laurens W. Adv Sci (Weinh) Research Articles The recent advent of topological states of matter spawned many significant discoveries. The quantum anomalous Hall (QAH) effect is a prime example due to its potential for applications in quantum metrology, as well as its influence on fundamental research into the underlying topological and magnetic states and into axion electrodynamics. Here, electronic transport studies on a (V,Bi,Sb)(2)Te(3) ferromagnetic topological insulator nanostructure in the QAH regime are presented. This allows access to the dynamics of an individual ferromagnetic domain. The domain size is estimated to be in the 50–100 nm range. Telegraph noise resulting from the magnetization fluctuations of this domain is observed in the Hall signal. Careful analysis of the influence of temperature and external magnetic field on the domain switching statistics provides evidence for quantum tunneling (QT) of magnetization in a macrospin state. This ferromagnetic macrospin is not only the largest magnetic object in which QT is observed, but also the first observation of the effect in a topological state of matter. John Wiley and Sons Inc. 2023-06-14 /pmc/articles/PMC10401085/ /pubmed/37314152 http://dx.doi.org/10.1002/advs.202303165 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Fijalkowski, Kajetan M.
Liu, Nan
Mandal, Pankaj
Schreyeck, Steffen
Brunner, Karl
Gould, Charles
Molenkamp, Laurens W.
Macroscopic Quantum Tunneling of a Topological Ferromagnet
title Macroscopic Quantum Tunneling of a Topological Ferromagnet
title_full Macroscopic Quantum Tunneling of a Topological Ferromagnet
title_fullStr Macroscopic Quantum Tunneling of a Topological Ferromagnet
title_full_unstemmed Macroscopic Quantum Tunneling of a Topological Ferromagnet
title_short Macroscopic Quantum Tunneling of a Topological Ferromagnet
title_sort macroscopic quantum tunneling of a topological ferromagnet
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401085/
https://www.ncbi.nlm.nih.gov/pubmed/37314152
http://dx.doi.org/10.1002/advs.202303165
work_keys_str_mv AT fijalkowskikajetanm macroscopicquantumtunnelingofatopologicalferromagnet
AT liunan macroscopicquantumtunnelingofatopologicalferromagnet
AT mandalpankaj macroscopicquantumtunnelingofatopologicalferromagnet
AT schreyecksteffen macroscopicquantumtunnelingofatopologicalferromagnet
AT brunnerkarl macroscopicquantumtunnelingofatopologicalferromagnet
AT gouldcharles macroscopicquantumtunnelingofatopologicalferromagnet
AT molenkamplaurensw macroscopicquantumtunnelingofatopologicalferromagnet