Cargando…

Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array

Molecule‐based functional devices may take advantage of surface‐mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high‐spin state are relatively short, a di...

Descripción completa

Detalles Bibliográficos
Autores principales: Cojocariu, Iulia, Windischbacher, Andreas, Baranowski, Daniel, Jugovac, Matteo, Ferreira, Rodrigo Cezar de Campos, Doležal, Jiří, Švec, Martin, Zamalloa‐Serrano, Jorge Manuel, Tormen, Massimo, Schio, Luca, Floreano, Luca, Dreiser, Jan, Puschnig, Peter, Feyer, Vitaliy, Schneider, Claus M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401090/
https://www.ncbi.nlm.nih.gov/pubmed/37199683
http://dx.doi.org/10.1002/advs.202300223
_version_ 1785084577663942656
author Cojocariu, Iulia
Windischbacher, Andreas
Baranowski, Daniel
Jugovac, Matteo
Ferreira, Rodrigo Cezar de Campos
Doležal, Jiří
Švec, Martin
Zamalloa‐Serrano, Jorge Manuel
Tormen, Massimo
Schio, Luca
Floreano, Luca
Dreiser, Jan
Puschnig, Peter
Feyer, Vitaliy
Schneider, Claus M.
author_facet Cojocariu, Iulia
Windischbacher, Andreas
Baranowski, Daniel
Jugovac, Matteo
Ferreira, Rodrigo Cezar de Campos
Doležal, Jiří
Švec, Martin
Zamalloa‐Serrano, Jorge Manuel
Tormen, Massimo
Schio, Luca
Floreano, Luca
Dreiser, Jan
Puschnig, Peter
Feyer, Vitaliy
Schneider, Claus M.
author_sort Cojocariu, Iulia
collection PubMed
description Molecule‐based functional devices may take advantage of surface‐mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high‐spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non‐volatile, since no external stimuli are required to preserve it. It originates from the surface‐induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non‐volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule‐based information storage devices.
format Online
Article
Text
id pubmed-10401090
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104010902023-08-05 Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array Cojocariu, Iulia Windischbacher, Andreas Baranowski, Daniel Jugovac, Matteo Ferreira, Rodrigo Cezar de Campos Doležal, Jiří Švec, Martin Zamalloa‐Serrano, Jorge Manuel Tormen, Massimo Schio, Luca Floreano, Luca Dreiser, Jan Puschnig, Peter Feyer, Vitaliy Schneider, Claus M. Adv Sci (Weinh) Research Articles Molecule‐based functional devices may take advantage of surface‐mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high‐spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non‐volatile, since no external stimuli are required to preserve it. It originates from the surface‐induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non‐volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule‐based information storage devices. John Wiley and Sons Inc. 2023-05-18 /pmc/articles/PMC10401090/ /pubmed/37199683 http://dx.doi.org/10.1002/advs.202300223 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Cojocariu, Iulia
Windischbacher, Andreas
Baranowski, Daniel
Jugovac, Matteo
Ferreira, Rodrigo Cezar de Campos
Doležal, Jiří
Švec, Martin
Zamalloa‐Serrano, Jorge Manuel
Tormen, Massimo
Schio, Luca
Floreano, Luca
Dreiser, Jan
Puschnig, Peter
Feyer, Vitaliy
Schneider, Claus M.
Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array
title Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array
title_full Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array
title_fullStr Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array
title_full_unstemmed Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array
title_short Surface‐Mediated Spin Locking and Thermal Unlocking in a 2D Molecular Array
title_sort surface‐mediated spin locking and thermal unlocking in a 2d molecular array
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401090/
https://www.ncbi.nlm.nih.gov/pubmed/37199683
http://dx.doi.org/10.1002/advs.202300223
work_keys_str_mv AT cojocariuiulia surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT windischbacherandreas surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT baranowskidaniel surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT jugovacmatteo surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT ferreirarodrigocezardecampos surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT dolezaljiri surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT svecmartin surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT zamalloaserranojorgemanuel surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT tormenmassimo surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT schioluca surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT floreanoluca surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT dreiserjan surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT puschnigpeter surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT feyervitaliy surfacemediatedspinlockingandthermalunlockingina2dmoleculararray
AT schneiderclausm surfacemediatedspinlockingandthermalunlockingina2dmoleculararray