Cargando…
Machine Learning Descriptors for Data‐Driven Catalysis Study
Traditional trial‐and‐error experiments and theoretical simulations have difficulty optimizing catalytic processes and developing new, better‐performing catalysts. Machine learning (ML) provides a promising approach for accelerating catalysis research due to its powerful learning and predictive abil...
Autores principales: | Mou, Li‐Hui, Han, TianTian, Smith, Pieter E. S., Sharman, Edward, Jiang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401178/ https://www.ncbi.nlm.nih.gov/pubmed/37191279 http://dx.doi.org/10.1002/advs.202301020 |
Ejemplares similares
-
Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
por: Amar, Yehia, et al.
Publicado: (2019) -
Machine learning of spectra-property relationship for imperfect and small chemistry data
por: Chong, Yuanyuan, et al.
Publicado: (2023) -
Descriptor selection for predicting interfacial thermal resistance by machine learning methods
por: Tian, Xiaojuan, et al.
Publicado: (2021) -
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
por: Winter, Robin, et al.
Publicado: (2018) -
Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors
por: Yang, Ze, et al.
Publicado: (2022)