Cargando…
Multi-material electrospinning: from methods to biomedical applications
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401296/ https://www.ncbi.nlm.nih.gov/pubmed/37545561 http://dx.doi.org/10.1016/j.mtbio.2023.100710 |
_version_ | 1785084628967620608 |
---|---|
author | Xing, Jiyao Zhang, Miao Liu, Xinlin Wang, Chao Xu, Nannan Xing, Dongming |
author_facet | Xing, Jiyao Zhang, Miao Liu, Xinlin Wang, Chao Xu, Nannan Xing, Dongming |
author_sort | Xing, Jiyao |
collection | PubMed |
description | Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered. |
format | Online Article Text |
id | pubmed-10401296 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104012962023-08-05 Multi-material electrospinning: from methods to biomedical applications Xing, Jiyao Zhang, Miao Liu, Xinlin Wang, Chao Xu, Nannan Xing, Dongming Mater Today Bio Review Article Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered. Elsevier 2023-06-23 /pmc/articles/PMC10401296/ /pubmed/37545561 http://dx.doi.org/10.1016/j.mtbio.2023.100710 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Article Xing, Jiyao Zhang, Miao Liu, Xinlin Wang, Chao Xu, Nannan Xing, Dongming Multi-material electrospinning: from methods to biomedical applications |
title | Multi-material electrospinning: from methods to biomedical applications |
title_full | Multi-material electrospinning: from methods to biomedical applications |
title_fullStr | Multi-material electrospinning: from methods to biomedical applications |
title_full_unstemmed | Multi-material electrospinning: from methods to biomedical applications |
title_short | Multi-material electrospinning: from methods to biomedical applications |
title_sort | multi-material electrospinning: from methods to biomedical applications |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401296/ https://www.ncbi.nlm.nih.gov/pubmed/37545561 http://dx.doi.org/10.1016/j.mtbio.2023.100710 |
work_keys_str_mv | AT xingjiyao multimaterialelectrospinningfrommethodstobiomedicalapplications AT zhangmiao multimaterialelectrospinningfrommethodstobiomedicalapplications AT liuxinlin multimaterialelectrospinningfrommethodstobiomedicalapplications AT wangchao multimaterialelectrospinningfrommethodstobiomedicalapplications AT xunannan multimaterialelectrospinningfrommethodstobiomedicalapplications AT xingdongming multimaterialelectrospinningfrommethodstobiomedicalapplications |