Cargando…

An ontology-based approach for harmonization and cross-cohort query of Alzheimer’s disease data resources

BACKGROUND: In the United States, the National Alzheimer’s Coordinating Center (NACC) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) are two major data sharing resources for Alzheimer’s Disease (AD) research. NACC and ADNI strive to make their data more FAIR (findable, interoperable, acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Xubing, Li, Xiaojin, Zhang, Guo-Qiang, Tao, Cui, Schulz, Paul E., Cui, Licong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401730/
https://www.ncbi.nlm.nih.gov/pubmed/37542312
http://dx.doi.org/10.1186/s12911-023-02250-z
Descripción
Sumario:BACKGROUND: In the United States, the National Alzheimer’s Coordinating Center (NACC) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) are two major data sharing resources for Alzheimer’s Disease (AD) research. NACC and ADNI strive to make their data more FAIR (findable, interoperable, accessible and reusable) for the broader research community. However, there is limited work harmonizing and supporting cross-cohort interoperability of the two resources. METHOD: In this paper, we leverage an ontology-based approach to harmonize data elements in the two resources and develop a web-based query system to search patient cohorts across the two resources. We first mapped data elements across NACC and ADNI, and performed value harmonization for the mapped data elements with inconsistent permissible values. Then we built an Alzheimer’s Disease Data Element Ontology (ADEO) to model the mapped data elements in NACC and ADNI. We further developed a prototype cross-cohort query system to search patient cohorts across NACC and ADNI. RESULTS: After manual review, we found 172 mappings between NACC and ADNI. These 172 mappings were further used to construct common concepts in ADEO. Our data element mapping and harmonization resulted in five files storing common concepts, variables in NACC and ADNI, mappings between variables and common concepts, permissible values of categorical type data elements, and coding inconsistency harmonization, respectively. Our cross-cohort query system consists of three core architectural elements: a web-based interface, an advanced query engine, and a backend MongoDB database. CONCLUSIONS: In this work, ADEO has been specifically designed to facilitate data harmonization and cross-cohort query of NACC and ADNI data resources. Although our prototype cross-cohort query system was developed for exploring NACC and ADNI, its backend and frontend framework has been designed and implemented to be generally applicable to other domains for querying patient cohorts from multiple heterogeneous data sources.