Cargando…

Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage II colorectal cancer patients

BACKGROUND: Our study aimed to explore the potential of radiomics features derived from CT images in predicting the prognosis and response to adjuvant chemotherapy (ACT) in patients with Stage II colorectal cancer (CRC). METHODS: A total of 478 patients with confirmed stage II CRC, with 313 from Sha...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hui, Hu, Muni, Ma, Yanru, Yao, Xun, Lin, Xiaozhu, Li, Menglei, Li, Yue, Wu, Zhiyuan, Shi, Debing, Tong, Tong, Chen, Haoyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401876/
https://www.ncbi.nlm.nih.gov/pubmed/37537659
http://dx.doi.org/10.1186/s40644-023-00588-1
Descripción
Sumario:BACKGROUND: Our study aimed to explore the potential of radiomics features derived from CT images in predicting the prognosis and response to adjuvant chemotherapy (ACT) in patients with Stage II colorectal cancer (CRC). METHODS: A total of 478 patients with confirmed stage II CRC, with 313 from Shanghai (Training set) and 165 from Beijing (Validation set) were enrolled. Optimized features were selected using GridSearchCV and Iterative Feature Elimination (IFE) algorithm. Subsequently, we developed an ensemble random forest classifier to predict the probability of disease relapse.We evaluated the performance of the model using the concordance index (C-index), precision-recall curves, and area under the precision-recall curves (AUC(PR)). RESULTS: A radiomic model (namely the RF5 model) consisting of four radiomics features and T stage were developed. The RF5 model performed better than simple radiomics features or T stage alone, with higher C-index and AUC(PR), as well as better sensitivity and specificity (C-index(RF5): 0.836; AUC(PR) = 0.711; Sensitivity = 0.610; Specificity = 0.935). We identified an optimal cutoff value of 0.1215 to split patients into high- or low-score subgroups, with those in the low-score group having better disease-free survival (DFS) (Training Set: P = 1.4e-11; Validation Set: P = 0.015). Furthermore, patients in the high-score group who received ACT had better DFS compared to those who did not receive ACT (P = 0.04). However, no statistical difference was found in low-score patients (P = 0.17). CONCLUSION: The radiomic model can serve as a reliable tool for assessing prognosis and identifying the optimal candidates for ACT in Stage II CRC patients. TRIAL REGISTRATION: Retrospectively registered. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-023-00588-1.