Cargando…
Exuberant de novo dendritic spine growth in mature neurons
Dendritic spines are structural correlates of excitatory synapses maintaining stable synaptic communications. However, this strong spine-synapse relationship was mainly characterized in excitatory pyramidal neurons (PyNs), raising a possibility that inferring synaptic density from dendritic spine nu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401948/ https://www.ncbi.nlm.nih.gov/pubmed/37546796 http://dx.doi.org/10.1101/2023.07.21.550095 |
_version_ | 1785084776522186752 |
---|---|
author | Krüssel, Sarah Deb, Ishana Son, Seungkyu Ewall, Gabrielle Chang, Minhyeok Lee, Hey-Kyoung do Heo, Won Kwon, Hyung-Bae |
author_facet | Krüssel, Sarah Deb, Ishana Son, Seungkyu Ewall, Gabrielle Chang, Minhyeok Lee, Hey-Kyoung do Heo, Won Kwon, Hyung-Bae |
author_sort | Krüssel, Sarah |
collection | PubMed |
description | Dendritic spines are structural correlates of excitatory synapses maintaining stable synaptic communications. However, this strong spine-synapse relationship was mainly characterized in excitatory pyramidal neurons (PyNs), raising a possibility that inferring synaptic density from dendritic spine number may not be universally applied to all neuronal types. Here we found that the ectopic expression of H-Ras increased dendritic spine numbers regardless of cortical cell types such as layer 2/3 pyramidal neurons (PyNs), parvalbumin (PV)- and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex (M1). The probability of detecting dendritic spines was positively correlated with the magnitude of H-Ras activity, suggesting elevated local H-Ras activity is involved in the process of dendritic spine formation. H-Ras overexpression caused high spine turnover rate via adding more spines rather than eliminating them. Two-photon photolysis of glutamate triggered de novo dendritic spine formation in mature neurons, suggesting H-Ras induced spine formation is not restricted to the early development. In PyNs and PV-INs, but not VIP-INs, we observed a shift in average spine neck length towards longer filopodia-like phenotypes. The portion of dendritic spines lacking key excitatory synaptic proteins were significantly increased in H-Ras transfected neurons, suggesting that these increased spines have other distinct functions. High spine density caused by H-Ras did not result in change in the frequency or the amplitude of miniature excitatory postsynaptic currents (mEPSCs). Thus, our results propose that dendritic spines possess more multifaceted functions beyond the morphological proxy of excitatory synapse. |
format | Online Article Text |
id | pubmed-10401948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104019482023-08-05 Exuberant de novo dendritic spine growth in mature neurons Krüssel, Sarah Deb, Ishana Son, Seungkyu Ewall, Gabrielle Chang, Minhyeok Lee, Hey-Kyoung do Heo, Won Kwon, Hyung-Bae bioRxiv Article Dendritic spines are structural correlates of excitatory synapses maintaining stable synaptic communications. However, this strong spine-synapse relationship was mainly characterized in excitatory pyramidal neurons (PyNs), raising a possibility that inferring synaptic density from dendritic spine number may not be universally applied to all neuronal types. Here we found that the ectopic expression of H-Ras increased dendritic spine numbers regardless of cortical cell types such as layer 2/3 pyramidal neurons (PyNs), parvalbumin (PV)- and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex (M1). The probability of detecting dendritic spines was positively correlated with the magnitude of H-Ras activity, suggesting elevated local H-Ras activity is involved in the process of dendritic spine formation. H-Ras overexpression caused high spine turnover rate via adding more spines rather than eliminating them. Two-photon photolysis of glutamate triggered de novo dendritic spine formation in mature neurons, suggesting H-Ras induced spine formation is not restricted to the early development. In PyNs and PV-INs, but not VIP-INs, we observed a shift in average spine neck length towards longer filopodia-like phenotypes. The portion of dendritic spines lacking key excitatory synaptic proteins were significantly increased in H-Ras transfected neurons, suggesting that these increased spines have other distinct functions. High spine density caused by H-Ras did not result in change in the frequency or the amplitude of miniature excitatory postsynaptic currents (mEPSCs). Thus, our results propose that dendritic spines possess more multifaceted functions beyond the morphological proxy of excitatory synapse. Cold Spring Harbor Laboratory 2023-07-25 /pmc/articles/PMC10401948/ /pubmed/37546796 http://dx.doi.org/10.1101/2023.07.21.550095 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Krüssel, Sarah Deb, Ishana Son, Seungkyu Ewall, Gabrielle Chang, Minhyeok Lee, Hey-Kyoung do Heo, Won Kwon, Hyung-Bae Exuberant de novo dendritic spine growth in mature neurons |
title | Exuberant de novo dendritic spine growth in mature neurons |
title_full | Exuberant de novo dendritic spine growth in mature neurons |
title_fullStr | Exuberant de novo dendritic spine growth in mature neurons |
title_full_unstemmed | Exuberant de novo dendritic spine growth in mature neurons |
title_short | Exuberant de novo dendritic spine growth in mature neurons |
title_sort | exuberant de novo dendritic spine growth in mature neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401948/ https://www.ncbi.nlm.nih.gov/pubmed/37546796 http://dx.doi.org/10.1101/2023.07.21.550095 |
work_keys_str_mv | AT krusselsarah exuberantdenovodendriticspinegrowthinmatureneurons AT debishana exuberantdenovodendriticspinegrowthinmatureneurons AT sonseungkyu exuberantdenovodendriticspinegrowthinmatureneurons AT ewallgabrielle exuberantdenovodendriticspinegrowthinmatureneurons AT changminhyeok exuberantdenovodendriticspinegrowthinmatureneurons AT leeheykyoung exuberantdenovodendriticspinegrowthinmatureneurons AT doheowon exuberantdenovodendriticspinegrowthinmatureneurons AT kwonhyungbae exuberantdenovodendriticspinegrowthinmatureneurons |