Cargando…
Evaluating steroid hormone receptor interactions using the live-cell NanoBRET proximity assay
Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estroge...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402027/ https://www.ncbi.nlm.nih.gov/pubmed/37546915 http://dx.doi.org/10.1101/2023.07.25.550078 |
Sumario: | Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance-associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk. |
---|