Cargando…

Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system

Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryan, Mackenzie E., Damke, Prashant P., Bryant, Caitlynn, Sheedlo, Michael J., Shaffer, Carrie L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402047/
https://www.ncbi.nlm.nih.gov/pubmed/37546756
http://dx.doi.org/10.1101/2023.07.25.550604
_version_ 1785084793350782976
author Ryan, Mackenzie E.
Damke, Prashant P.
Bryant, Caitlynn
Sheedlo, Michael J.
Shaffer, Carrie L.
author_facet Ryan, Mackenzie E.
Damke, Prashant P.
Bryant, Caitlynn
Sheedlo, Michael J.
Shaffer, Carrie L.
author_sort Ryan, Mackenzie E.
collection PubMed
description Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π–π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π–π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
format Online
Article
Text
id pubmed-10402047
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104020472023-08-05 Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system Ryan, Mackenzie E. Damke, Prashant P. Bryant, Caitlynn Sheedlo, Michael J. Shaffer, Carrie L. bioRxiv Article Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π–π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π–π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel. Cold Spring Harbor Laboratory 2023-07-26 /pmc/articles/PMC10402047/ /pubmed/37546756 http://dx.doi.org/10.1101/2023.07.25.550604 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Ryan, Mackenzie E.
Damke, Prashant P.
Bryant, Caitlynn
Sheedlo, Michael J.
Shaffer, Carrie L.
Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system
title Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system
title_full Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system
title_fullStr Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system
title_full_unstemmed Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system
title_short Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system
title_sort architectural asymmetry enables dna transport through the helicobacter pylori cag type iv secretion system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402047/
https://www.ncbi.nlm.nih.gov/pubmed/37546756
http://dx.doi.org/10.1101/2023.07.25.550604
work_keys_str_mv AT ryanmackenziee architecturalasymmetryenablesdnatransportthroughthehelicobacterpyloricagtypeivsecretionsystem
AT damkeprashantp architecturalasymmetryenablesdnatransportthroughthehelicobacterpyloricagtypeivsecretionsystem
AT bryantcaitlynn architecturalasymmetryenablesdnatransportthroughthehelicobacterpyloricagtypeivsecretionsystem
AT sheedlomichaelj architecturalasymmetryenablesdnatransportthroughthehelicobacterpyloricagtypeivsecretionsystem
AT shaffercarriel architecturalasymmetryenablesdnatransportthroughthehelicobacterpyloricagtypeivsecretionsystem