Cargando…

Automatic design of gene regulatory mechanisms for spatial pattern formation

Synthetic developmental biology aims to engineer gene regulatory mechanisms (GRMs) for understanding and producing desired multicellular patterns and shapes. However, designing GRMs for spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits....

Descripción completa

Detalles Bibliográficos
Autores principales: Mousavi, Reza, Lobo, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402059/
https://www.ncbi.nlm.nih.gov/pubmed/37546866
http://dx.doi.org/10.1101/2023.07.26.550573
Descripción
Sumario:Synthetic developmental biology aims to engineer gene regulatory mechanisms (GRMs) for understanding and producing desired multicellular patterns and shapes. However, designing GRMs for spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits. Here we present a methodology to automatically design GRMs that can produce any given spatial pattern. The proposed approach uses two orthogonal morphogen gradients acting as positional information signals in a multicellular tissue area or culture, which constitutes a continuous field of engineered cells implementing the same designed GRM. To efficiently design both the circuit network and the interaction mechanisms—including the number of genes necessary for the formation of the target pattern—we developed an automated algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can be configured to design GRMs that are either simple to produce approximate patterns or complex to produce precise patterns. We demonstrate the approach by automatically designing GRMs that can produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal morphogen gradients. The proposed framework offers a versatile approach to systematically design and discover pattern-producing genetic circuits.