Cargando…

Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin

Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetr...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wei I., De Belly, Henry, Wang, Bingying, Wong, Andrew, Kim, Minseo, Oh, Fiona, DeGeorge, Jason, Huang, Xinya, Guang, Shouhong, Weiner, Orion D., Ma, Dengke K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402089/
https://www.ncbi.nlm.nih.gov/pubmed/37546737
http://dx.doi.org/10.1101/2023.07.25.550452
Descripción
Sumario:Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. Up-regulation of TSP-1 is long lasting even after transient early-life stress. Such regulation requires CBP-1, a histone acetyl-transference that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers striking C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.