Cargando…
Enhanced cell segmentation with limited annotated data using generative adversarial networks
The application of deep learning is rapidly transforming the field of bioimage analysis. While deep learning has shown great promise in complex microscopy tasks such as single-cell segmentation, the development of generalizable foundation deep learning segmentation models is hampered by the scarcity...
Autores principales: | Zargari, Abolfazl, Mashhadi, Najmeh, Shariati, S. Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402092/ https://www.ncbi.nlm.nih.gov/pubmed/37546774 http://dx.doi.org/10.1101/2023.07.26.550715 |
Ejemplares similares
-
Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?
por: Heilemann, Gerd, et al.
Publicado: (2021) -
Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation
por: Cheng, Ting-Wei, et al.
Publicado: (2023) -
DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
por: Zargari, Abolfazl, et al.
Publicado: (2023) -
Automatic Kidney Segmentation Method Based on an Enhanced Generative Adversarial Network
por: Shan, Tian, et al.
Publicado: (2023) -
Generative adversarial networks based skin lesion segmentation
por: Innani, Shubham, et al.
Publicado: (2023)