Cargando…
Deep mutational scanning and machine learning uncover antimicrobial peptide features driving membrane selectivity
Antimicrobial peptides commonly act by disrupting bacterial membranes, but also frequently damage mammalian membranes. Deciphering the rules governing membrane selectivity is critical to understanding their function and enabling their therapeutic use. Past attempts to decipher these rules have faile...
Autores principales: | Randall, Justin R., Vieira, Luiz C., Wilke, Claus O., Davies, Bryan W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402124/ https://www.ncbi.nlm.nih.gov/pubmed/37547010 http://dx.doi.org/10.1101/2023.07.28.551017 |
Ejemplares similares
-
Deep mutational scanning and machine learning uncover antimicrobial peptide features driving membrane selectivity
por: Randall, Justin R., et al.
Publicado: (2023) -
Optimization of the antimicrobial peptide Bac7 by deep mutational scanning
por: Koch, Philipp, et al.
Publicado: (2022) -
Designing and identifying β-hairpin peptide macrocycles with antibiotic potential
por: Randall, Justin R., et al.
Publicado: (2023) -
Uncovering tissue-specific binding features from differential deep learning
por: Phuycharoen, Mike, et al.
Publicado: (2020) -
Nonproteinogenic deep mutational scanning of linear and cyclic peptides
por: Rogers, Joseph M., et al.
Publicado: (2018)