Cargando…
An active neural mechanism for relational learning and fast knowledge reassembly
How do we gain general insights from limited novel experiences? Humans and animals have a striking ability to learn relationships between experienced items, enabling efficient generalization and rapid assimilation of new information. One fundamental instance of such relational learning is transitive...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402151/ https://www.ncbi.nlm.nih.gov/pubmed/37546842 http://dx.doi.org/10.1101/2023.07.27.550739 |
Sumario: | How do we gain general insights from limited novel experiences? Humans and animals have a striking ability to learn relationships between experienced items, enabling efficient generalization and rapid assimilation of new information. One fundamental instance of such relational learning is transitive inference (learn A>B and B>C, infer A>C), which can be quickly and globally reorganized upon learning a new item (learn A>B>C and D>E>F, then C>D, and infer B>E). Despite considerable study, neural mechanisms of transitive inference and fast reassembly of existing knowledge remain elusive. Here we adopt a meta-learning (“learning-to-learn”) approach. We train artificial neural networks, endowed with synaptic plasticity and neuromodulation, to be able to learn novel orderings of arbitrary stimuli from repeated presentation of stimulus pairs. We then obtain a complete mechanistic understanding of this discovered neural learning algorithm. Remarkably, this learning involves active cognition: items from previous trials are selectively reinstated in working memory, enabling delayed, self-generated learning and knowledge reassembly. These findings identify a new mechanism for relational learning and insight, suggest new interpretations of neural activity in cognitive tasks, and highlight a novel approach to discovering neural mechanisms capable of supporting cognitive behaviors. |
---|