Cargando…

ChromaFold predicts the 3D contact map from single-cell chromatin accessibility

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve intera...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Vianne R., Yang, Rui, Das, Arnav, Luo, Renhe, Luo, Hanzhi, McNally, Dylan R., Karagiannidis, Ioannis, Rivas, Martin A., Wang, Zhong-Min, Barisic, Darko, Karbalayghareh, Alireza, Wong, Wilfred, Zhan, Yingqian A., Chin, Christopher R., Noble, William, Bilmes, Jeff A., Apostolou, Effie, Kharas, Michael G., Béguelin, Wendy, Viny, Aaron D., Huangfu, Danwei, Rudensky, Alexander Y., Melnick, Ari M., Leslie, Christina S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402156/
https://www.ncbi.nlm.nih.gov/pubmed/37546906
http://dx.doi.org/10.1101/2023.07.27.550836
_version_ 1785084810787553280
author Gao, Vianne R.
Yang, Rui
Das, Arnav
Luo, Renhe
Luo, Hanzhi
McNally, Dylan R.
Karagiannidis, Ioannis
Rivas, Martin A.
Wang, Zhong-Min
Barisic, Darko
Karbalayghareh, Alireza
Wong, Wilfred
Zhan, Yingqian A.
Chin, Christopher R.
Noble, William
Bilmes, Jeff A.
Apostolou, Effie
Kharas, Michael G.
Béguelin, Wendy
Viny, Aaron D.
Huangfu, Danwei
Rudensky, Alexander Y.
Melnick, Ari M.
Leslie, Christina S.
author_facet Gao, Vianne R.
Yang, Rui
Das, Arnav
Luo, Renhe
Luo, Hanzhi
McNally, Dylan R.
Karagiannidis, Ioannis
Rivas, Martin A.
Wang, Zhong-Min
Barisic, Darko
Karbalayghareh, Alireza
Wong, Wilfred
Zhan, Yingqian A.
Chin, Christopher R.
Noble, William
Bilmes, Jeff A.
Apostolou, Effie
Kharas, Michael G.
Béguelin, Wendy
Viny, Aaron D.
Huangfu, Danwei
Rudensky, Alexander Y.
Melnick, Ari M.
Leslie, Christina S.
author_sort Gao, Vianne R.
collection PubMed
description The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.
format Online
Article
Text
id pubmed-10402156
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104021562023-08-05 ChromaFold predicts the 3D contact map from single-cell chromatin accessibility Gao, Vianne R. Yang, Rui Das, Arnav Luo, Renhe Luo, Hanzhi McNally, Dylan R. Karagiannidis, Ioannis Rivas, Martin A. Wang, Zhong-Min Barisic, Darko Karbalayghareh, Alireza Wong, Wilfred Zhan, Yingqian A. Chin, Christopher R. Noble, William Bilmes, Jeff A. Apostolou, Effie Kharas, Michael G. Béguelin, Wendy Viny, Aaron D. Huangfu, Danwei Rudensky, Alexander Y. Melnick, Ari M. Leslie, Christina S. bioRxiv Article The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible. Cold Spring Harbor Laboratory 2023-07-28 /pmc/articles/PMC10402156/ /pubmed/37546906 http://dx.doi.org/10.1101/2023.07.27.550836 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Gao, Vianne R.
Yang, Rui
Das, Arnav
Luo, Renhe
Luo, Hanzhi
McNally, Dylan R.
Karagiannidis, Ioannis
Rivas, Martin A.
Wang, Zhong-Min
Barisic, Darko
Karbalayghareh, Alireza
Wong, Wilfred
Zhan, Yingqian A.
Chin, Christopher R.
Noble, William
Bilmes, Jeff A.
Apostolou, Effie
Kharas, Michael G.
Béguelin, Wendy
Viny, Aaron D.
Huangfu, Danwei
Rudensky, Alexander Y.
Melnick, Ari M.
Leslie, Christina S.
ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_full ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_fullStr ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_full_unstemmed ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_short ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
title_sort chromafold predicts the 3d contact map from single-cell chromatin accessibility
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402156/
https://www.ncbi.nlm.nih.gov/pubmed/37546906
http://dx.doi.org/10.1101/2023.07.27.550836
work_keys_str_mv AT gaovianner chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT yangrui chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT dasarnav chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT luorenhe chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT luohanzhi chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT mcnallydylanr chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT karagiannidisioannis chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT rivasmartina chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT wangzhongmin chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT barisicdarko chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT karbalaygharehalireza chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT wongwilfred chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT zhanyingqiana chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT chinchristopherr chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT noblewilliam chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT bilmesjeffa chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT apostoloueffie chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT kharasmichaelg chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT beguelinwendy chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT vinyaarond chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT huangfudanwei chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT rudenskyalexandery chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT melnickarim chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility
AT lesliechristinas chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility