Cargando…
ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve intera...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402156/ https://www.ncbi.nlm.nih.gov/pubmed/37546906 http://dx.doi.org/10.1101/2023.07.27.550836 |
_version_ | 1785084810787553280 |
---|---|
author | Gao, Vianne R. Yang, Rui Das, Arnav Luo, Renhe Luo, Hanzhi McNally, Dylan R. Karagiannidis, Ioannis Rivas, Martin A. Wang, Zhong-Min Barisic, Darko Karbalayghareh, Alireza Wong, Wilfred Zhan, Yingqian A. Chin, Christopher R. Noble, William Bilmes, Jeff A. Apostolou, Effie Kharas, Michael G. Béguelin, Wendy Viny, Aaron D. Huangfu, Danwei Rudensky, Alexander Y. Melnick, Ari M. Leslie, Christina S. |
author_facet | Gao, Vianne R. Yang, Rui Das, Arnav Luo, Renhe Luo, Hanzhi McNally, Dylan R. Karagiannidis, Ioannis Rivas, Martin A. Wang, Zhong-Min Barisic, Darko Karbalayghareh, Alireza Wong, Wilfred Zhan, Yingqian A. Chin, Christopher R. Noble, William Bilmes, Jeff A. Apostolou, Effie Kharas, Michael G. Béguelin, Wendy Viny, Aaron D. Huangfu, Danwei Rudensky, Alexander Y. Melnick, Ari M. Leslie, Christina S. |
author_sort | Gao, Vianne R. |
collection | PubMed |
description | The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible. |
format | Online Article Text |
id | pubmed-10402156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104021562023-08-05 ChromaFold predicts the 3D contact map from single-cell chromatin accessibility Gao, Vianne R. Yang, Rui Das, Arnav Luo, Renhe Luo, Hanzhi McNally, Dylan R. Karagiannidis, Ioannis Rivas, Martin A. Wang, Zhong-Min Barisic, Darko Karbalayghareh, Alireza Wong, Wilfred Zhan, Yingqian A. Chin, Christopher R. Noble, William Bilmes, Jeff A. Apostolou, Effie Kharas, Michael G. Béguelin, Wendy Viny, Aaron D. Huangfu, Danwei Rudensky, Alexander Y. Melnick, Ari M. Leslie, Christina S. bioRxiv Article The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible. Cold Spring Harbor Laboratory 2023-07-28 /pmc/articles/PMC10402156/ /pubmed/37546906 http://dx.doi.org/10.1101/2023.07.27.550836 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Gao, Vianne R. Yang, Rui Das, Arnav Luo, Renhe Luo, Hanzhi McNally, Dylan R. Karagiannidis, Ioannis Rivas, Martin A. Wang, Zhong-Min Barisic, Darko Karbalayghareh, Alireza Wong, Wilfred Zhan, Yingqian A. Chin, Christopher R. Noble, William Bilmes, Jeff A. Apostolou, Effie Kharas, Michael G. Béguelin, Wendy Viny, Aaron D. Huangfu, Danwei Rudensky, Alexander Y. Melnick, Ari M. Leslie, Christina S. ChromaFold predicts the 3D contact map from single-cell chromatin accessibility |
title | ChromaFold predicts the 3D contact map from single-cell chromatin accessibility |
title_full | ChromaFold predicts the 3D contact map from single-cell chromatin accessibility |
title_fullStr | ChromaFold predicts the 3D contact map from single-cell chromatin accessibility |
title_full_unstemmed | ChromaFold predicts the 3D contact map from single-cell chromatin accessibility |
title_short | ChromaFold predicts the 3D contact map from single-cell chromatin accessibility |
title_sort | chromafold predicts the 3d contact map from single-cell chromatin accessibility |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402156/ https://www.ncbi.nlm.nih.gov/pubmed/37546906 http://dx.doi.org/10.1101/2023.07.27.550836 |
work_keys_str_mv | AT gaovianner chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT yangrui chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT dasarnav chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT luorenhe chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT luohanzhi chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT mcnallydylanr chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT karagiannidisioannis chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT rivasmartina chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT wangzhongmin chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT barisicdarko chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT karbalaygharehalireza chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT wongwilfred chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT zhanyingqiana chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT chinchristopherr chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT noblewilliam chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT bilmesjeffa chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT apostoloueffie chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT kharasmichaelg chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT beguelinwendy chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT vinyaarond chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT huangfudanwei chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT rudenskyalexandery chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT melnickarim chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility AT lesliechristinas chromafoldpredictsthe3dcontactmapfromsinglecellchromatinaccessibility |