Cargando…
Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforcement
This paper proposes a novel self-supervised learning method, RELAX-MORE, for quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll a model-based qMRI reconstruction into a deep learning framework, enabling the generation of highly accurate and robust MR...
Autores principales: | Bian, Wanyu, Jang, Albert, Liu, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402181/ https://www.ncbi.nlm.nih.gov/pubmed/37547657 |
Ejemplares similares
-
A Self-Supervised Deep Learning Reconstruction for Shortening the Breathhold and Acquisition Window in Cardiac Magnetic Resonance Fingerprinting
por: Hamilton, Jesse I.
Publicado: (2022) -
Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches
por: Eun, Da-in, et al.
Publicado: (2020) -
Multiple Self-Supervised Auxiliary Tasks for Target-Driven Visual Navigation Using Deep Reinforcement Learning
por: Zhang, Wenzhi, et al.
Publicado: (2023) -
Self-Supervised Deep Learning for Model Correction in the Computational Crystallography Toolbox
por: Ganapati, Vidya, et al.
Publicado: (2023) -
Deep learning with self-supervision and uncertainty regularization to count fish in underwater images
por: Tarling, Penny, et al.
Publicado: (2022)