Cargando…

PLANTAIN: Diffusion-inspired Pose Score Minimization for Fast and Accurate Molecular Docking

Molecular docking aims to predict the 3D pose of a small molecule in a protein binding site. Traditional docking methods predict ligand poses by minimizing a physics-inspired scoring function. Recently, a diffusion model has been proposed that iteratively refines a ligand pose. We combine these two...

Descripción completa

Detalles Bibliográficos
Autores principales: Brocidiacono, Michael, Popov, Konstantin I., Koes, David Ryan, Tropsha, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402188/
https://www.ncbi.nlm.nih.gov/pubmed/37547658
Descripción
Sumario:Molecular docking aims to predict the 3D pose of a small molecule in a protein binding site. Traditional docking methods predict ligand poses by minimizing a physics-inspired scoring function. Recently, a diffusion model has been proposed that iteratively refines a ligand pose. We combine these two approaches by training a pose scoring function in a diffusion-inspired manner. In our method, PLANTAIN, a neural network is used to develop a very fast pose scoring function. We parameterize a simple scoring function on the fly and use L-BFGS minimization to optimize an initially random ligand pose. Using rigorous benchmarking practices, we demonstrate that our method achieves state-of-the-art performance while running ten times faster than the next-best method. We release PLANTAIN publicly and hope that it improves the utility of virtual screening workflows.