Cargando…
Equitable machine learning counteracts ancestral bias in precision medicine, improving outcomes for all
Gold standard genomic datasets severely under-represent non-European populations, leading to inequities and a limited understanding of human disease [1–8]. Therapeutics and outcomes remain hidden because we lack insights that we could gain from analyzing ancestry-unbiased genomic data. To address th...
Autores principales: | Smith, Leslie A, Cahill, James A, Graim, Kiley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402189/ https://www.ncbi.nlm.nih.gov/pubmed/37546907 http://dx.doi.org/10.21203/rs.3.rs-3168446/v1 |
Ejemplares similares
-
Not all biases are bad: equitable and inequitable biases in machine learning and radiology
por: Pot, Mirjam, et al.
Publicado: (2021) -
Letter to the editor: “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
por: Iannessi, Antoine, et al.
Publicado: (2021) -
Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
por: Pot, Mirjam, et al.
Publicado: (2021) -
All of Us and the Promise of Precision Medicine: Achieving Equitable Access for Federally Qualified Health Center Patients
por: Neuhaus, Carolyn P., et al.
Publicado: (2023) -
Mitigating bias in machine learning for medicine
por: Vokinger, Kerstin N., et al.
Publicado: (2021)