Cargando…

Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management

PURPOSE: Accurate body weight measurement is essential to promote computed tomography (CT) dose optimization; however, body weight cannot always be measured prior to CT examination, especially in the emergency setting. The aim of this study was to investigate whether deep learning‐based body weight...

Descripción completa

Detalles Bibliográficos
Autores principales: Ichikawa, Shota, Itadani, Hideki, Sugimori, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402676/
https://www.ncbi.nlm.nih.gov/pubmed/37337623
http://dx.doi.org/10.1002/acm2.14080
_version_ 1785084895414976512
author Ichikawa, Shota
Itadani, Hideki
Sugimori, Hiroyuki
author_facet Ichikawa, Shota
Itadani, Hideki
Sugimori, Hiroyuki
author_sort Ichikawa, Shota
collection PubMed
description PURPOSE: Accurate body weight measurement is essential to promote computed tomography (CT) dose optimization; however, body weight cannot always be measured prior to CT examination, especially in the emergency setting. The aim of this study was to investigate whether deep learning‐based body weight from chest CT scout images can be an alternative to actual body weight in CT radiation dose management. METHODS: Chest CT scout images and diagnostic images acquired for medical checkups were collected from 3601 patients. A deep learning model was developed to predict body weight from scout images. The correlation between actual and predicted body weight was analyzed. To validate the use of predicted body weight in radiation dose management, the volume CT dose index (CTDI(vol)) and the dose–length product (DLP) were compared between the body weight subgroups based on actual and predicted body weight. Surrogate size‐specific dose estimates (SSDEs) acquired from actual and predicted body weight were compared to the reference standard. RESULTS: The median actual and predicted body weight were 64.1 (interquartile range: 56.5–72.4) and 64.0 (56.3–72.2) kg, respectively. There was a strong correlation between actual and predicted body weight (ρ = 0.892, p < 0.001). The CTDI(vol) and DLP of the body weight subgroups were similar based on actual and predicted body weight (p < 0.001). Both surrogate SSDEs based on actual and predicted body weight were not significantly different from the reference standard (p = 0.447 and 0.410, respectively). CONCLUSION: Predicted body weight can be an alternative to actual body weight in managing dose metrics and simplifying SSDE calculation. Our proposed method can be useful for CT radiation dose management in adult patients with unknown body weight.
format Online
Article
Text
id pubmed-10402676
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104026762023-08-05 Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management Ichikawa, Shota Itadani, Hideki Sugimori, Hiroyuki J Appl Clin Med Phys Medical Imaging PURPOSE: Accurate body weight measurement is essential to promote computed tomography (CT) dose optimization; however, body weight cannot always be measured prior to CT examination, especially in the emergency setting. The aim of this study was to investigate whether deep learning‐based body weight from chest CT scout images can be an alternative to actual body weight in CT radiation dose management. METHODS: Chest CT scout images and diagnostic images acquired for medical checkups were collected from 3601 patients. A deep learning model was developed to predict body weight from scout images. The correlation between actual and predicted body weight was analyzed. To validate the use of predicted body weight in radiation dose management, the volume CT dose index (CTDI(vol)) and the dose–length product (DLP) were compared between the body weight subgroups based on actual and predicted body weight. Surrogate size‐specific dose estimates (SSDEs) acquired from actual and predicted body weight were compared to the reference standard. RESULTS: The median actual and predicted body weight were 64.1 (interquartile range: 56.5–72.4) and 64.0 (56.3–72.2) kg, respectively. There was a strong correlation between actual and predicted body weight (ρ = 0.892, p < 0.001). The CTDI(vol) and DLP of the body weight subgroups were similar based on actual and predicted body weight (p < 0.001). Both surrogate SSDEs based on actual and predicted body weight were not significantly different from the reference standard (p = 0.447 and 0.410, respectively). CONCLUSION: Predicted body weight can be an alternative to actual body weight in managing dose metrics and simplifying SSDE calculation. Our proposed method can be useful for CT radiation dose management in adult patients with unknown body weight. John Wiley and Sons Inc. 2023-06-19 /pmc/articles/PMC10402676/ /pubmed/37337623 http://dx.doi.org/10.1002/acm2.14080 Text en © 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Medical Imaging
Ichikawa, Shota
Itadani, Hideki
Sugimori, Hiroyuki
Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management
title Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management
title_full Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management
title_fullStr Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management
title_full_unstemmed Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management
title_short Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose management
title_sort deep learning‐based body weight from scout images can be an alternative to actual body weight in ct radiation dose management
topic Medical Imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402676/
https://www.ncbi.nlm.nih.gov/pubmed/37337623
http://dx.doi.org/10.1002/acm2.14080
work_keys_str_mv AT ichikawashota deeplearningbasedbodyweightfromscoutimagescanbeanalternativetoactualbodyweightinctradiationdosemanagement
AT itadanihideki deeplearningbasedbodyweightfromscoutimagescanbeanalternativetoactualbodyweightinctradiationdosemanagement
AT sugimorihiroyuki deeplearningbasedbodyweightfromscoutimagescanbeanalternativetoactualbodyweightinctradiationdosemanagement