Cargando…
Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses
PURPOSE: To investigate the effect of different normalization preprocesses in deep learning on the accuracy of different tissues in synthetic computed tomography (sCT) and to combine their advantages to improve the accuracy of all tissues. METHODS: The cycle‐consistent adversarial network (CycleGAN)...
Autores principales: | Cao, Zheng, Gao, Xiang, Chang, Yankui, Liu, Gongfa, Pei, Yuanji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402686/ https://www.ncbi.nlm.nih.gov/pubmed/37092739 http://dx.doi.org/10.1002/acm2.14004 |
Ejemplares similares
-
A novel approach for eliminating metal artifacts based on MVCBCT and CycleGAN
por: Cao, Zheng, et al.
Publicado: (2022) -
Effect of metal implants and metal artifacts on back‐projected two‐dimensional entrance fluence determined by EPID dosimetry
por: Cao, Zheng, et al.
Publicado: (2023) -
Assessment of CBCT–based synthetic CT generation accuracy for adaptive radiotherapy planning
por: O'Hara, Christopher J., et al.
Publicado: (2022) -
A Comparison Study Between CNN-Based Deformed Planning CT and CycleGAN-Based Synthetic CT Methods for Improving iCBCT Image Quality
por: Yang, Bo, et al.
Publicado: (2022) -
Abdominopelvic MR to CT registration using a synthetic CT intermediate
por: Heo, Jin Uk, et al.
Publicado: (2022)