Cargando…

Discovering potential pathways between type 2 diabetes mellitus and diabetic retinopathy: A big data analysis of the South Korean National Sample Cohort

Diabetes mellitus, a prevalent metabolic disorder, is associated with a multitude of complications that necessitate vigilant management post-diagnosis. A notable complication, diabetic retinopathy, could lead to intense ocular injury, including vision impairment and blindness, due to the impact of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yoojoong, Hyun, Changwan, Lee, Minhyeok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402935/
https://www.ncbi.nlm.nih.gov/pubmed/37543803
http://dx.doi.org/10.1097/MD.0000000000034576
Descripción
Sumario:Diabetes mellitus, a prevalent metabolic disorder, is associated with a multitude of complications that necessitate vigilant management post-diagnosis. A notable complication, diabetic retinopathy, could lead to intense ocular injury, including vision impairment and blindness, due to the impact of the disease. Studying the transition from diabetes to diabetic retinopathy is paramount for grasping and halting the progression of complications. In this study, we examine the statistical correlation between type 2 diabetes mellitus and retinal disorders classified elsewhere, ultimately proposing a comprehensive disease network. The National Sample Cohort of South Korea, containing approximately 1 million samples and primary diagnoses based on the International Statistical Classification of Diseases and Related Health Problems 10th Revision classification, was utilized for this retrospective analysis. The diagnoses of both conditions displayed a statistically significant correlation with a chi-square test value of P < .001, and the t test for the initial diagnosis date also yielded a P < .001 value. The devised network, comprising 27 diseases and 142 connections, was established through statistical evaluations. This network offers insight into potential pathways leading to diabetic retinopathy and intermediary diseases, encouraging medical researchers to further examine various risk factors associated with these connections.