Cargando…

Spatial-temporal hypergraph convolutional network for traffic forecasting

Accurate traffic forecasting plays a critical role in the construction of intelligent transportation systems. However, due to the across road-network isomorphism in the spatial dimension and the periodic drift in the temporal dimension, existing traffic forecasting methods cannot satisfy the intrica...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhenzhen, Shen, Guojiang, Zhou, Junjie, Jin, Junchen, Kong, Xiangjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403163/
https://www.ncbi.nlm.nih.gov/pubmed/37547413
http://dx.doi.org/10.7717/peerj-cs.1450
Descripción
Sumario:Accurate traffic forecasting plays a critical role in the construction of intelligent transportation systems. However, due to the across road-network isomorphism in the spatial dimension and the periodic drift in the temporal dimension, existing traffic forecasting methods cannot satisfy the intricate spatial-temporal characteristics well. In this article, a spatial-temporal hypergraph convolutional network for traffic forecasting (ST-HCN) is proposed to tackle the problems mentioned above. Specifically, the proposed framework applies the K-means clustering algorithm and the connection characteristics of the physical road network itself to unify the local correlation and across road-network isomorphism. Then, a dual-channel hypergraph convolution to capture high-order spatial relationships in traffic data is established. Furthermore, the proposed framework utilizes a long short-term memory network with a convolution module (ConvLSTM) to deal with the periodic drift problem. Finally, the experiments in the real world demonstrate that the proposed framework outperforms the state-of-the-art baselines.