Cargando…
Spatial-temporal hypergraph convolutional network for traffic forecasting
Accurate traffic forecasting plays a critical role in the construction of intelligent transportation systems. However, due to the across road-network isomorphism in the spatial dimension and the periodic drift in the temporal dimension, existing traffic forecasting methods cannot satisfy the intrica...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403163/ https://www.ncbi.nlm.nih.gov/pubmed/37547413 http://dx.doi.org/10.7717/peerj-cs.1450 |
Sumario: | Accurate traffic forecasting plays a critical role in the construction of intelligent transportation systems. However, due to the across road-network isomorphism in the spatial dimension and the periodic drift in the temporal dimension, existing traffic forecasting methods cannot satisfy the intricate spatial-temporal characteristics well. In this article, a spatial-temporal hypergraph convolutional network for traffic forecasting (ST-HCN) is proposed to tackle the problems mentioned above. Specifically, the proposed framework applies the K-means clustering algorithm and the connection characteristics of the physical road network itself to unify the local correlation and across road-network isomorphism. Then, a dual-channel hypergraph convolution to capture high-order spatial relationships in traffic data is established. Furthermore, the proposed framework utilizes a long short-term memory network with a convolution module (ConvLSTM) to deal with the periodic drift problem. Finally, the experiments in the real world demonstrate that the proposed framework outperforms the state-of-the-art baselines. |
---|