Cargando…
Spatial-temporal hypergraph convolutional network for traffic forecasting
Accurate traffic forecasting plays a critical role in the construction of intelligent transportation systems. However, due to the across road-network isomorphism in the spatial dimension and the periodic drift in the temporal dimension, existing traffic forecasting methods cannot satisfy the intrica...
Autores principales: | Zhao, Zhenzhen, Shen, Guojiang, Zhou, Junjie, Jin, Junchen, Kong, Xiangjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403163/ https://www.ncbi.nlm.nih.gov/pubmed/37547413 http://dx.doi.org/10.7717/peerj-cs.1450 |
Ejemplares similares
-
Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network
por: Staffini, Alessio
Publicado: (2022) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
por: Tabares-Soto, Reinel, et al.
Publicado: (2021) -
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
por: Lu, Zhenzhen, et al.
Publicado: (2023) -
Human Autonomy in Future Drone Traffic: Joint Human–AI Control in Temporal Cognitive Work
por: Lundberg, Jonas, et al.
Publicado: (2021)