Cargando…
LOANet: a lightweight network using object attention for extracting buildings and roads from UAV aerial remote sensing images
Semantic segmentation for extracting buildings and roads from uncrewed aerial vehicle (UAV) remote sensing images by deep learning becomes a more efficient and convenient method than traditional manual segmentation in surveying and mapping fields. In order to make the model lightweight and improve t...
Autores principales: | Han, Xiaoxiang, Liu, Yiman, Liu, Gang, Lin, Yuanjie, Liu, Qiaohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403170/ https://www.ncbi.nlm.nih.gov/pubmed/37547422 http://dx.doi.org/10.7717/peerj-cs.1467 |
Ejemplares similares
-
Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning
por: Jung, Minjae, et al.
Publicado: (2022) -
Lightweight and efficient neural network with SPSA attention for wheat ear detection
por: Dong, Yan, et al.
Publicado: (2022) -
SeedSortNet: a rapid and highly effificient lightweight CNN based on visual attention for seed sorting
por: Li, Chunlei, et al.
Publicado: (2021) -
Lightweight Object Detection Algorithm for UAV Aerial Imagery
por: Wang, Jian, et al.
Publicado: (2023) -
Training and intrinsic evaluation of lightweight word embeddings for the clinical domain in Spanish
por: Chiu, Carolina, et al.
Publicado: (2022)