Cargando…
Detection of railway catenary insulator defects based on improved YOLOv5s
In this article, a method of railway catenary insulator defects detection is proposed, named RCID-YOLOv5s. In order to improve the network’s ability to detect defects in railway catenary insulators, a small object detection layer is introduced into the network model. Moreover, the Triplet Attention...
Autores principales: | Tang, Jing, Yu, Minghui, Wu, Minghu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403183/ https://www.ncbi.nlm.nih.gov/pubmed/37547415 http://dx.doi.org/10.7717/peerj-cs.1474 |
Ejemplares similares
-
Improved YOLOv4-tiny based on attention mechanism for skin detection
por: Li, Ping, et al.
Publicado: (2023) -
A multitask model for realtime fish detection and segmentation based on YOLOv5
por: Liu, QinLi, et al.
Publicado: (2023) -
A novel algorithm for small object detection based on YOLOv4
por: Wei, Jiangshu, et al.
Publicado: (2023) -
Detection and estimation research of high-speed railway catenary
por: Liu, Zhigang
Publicado: (2017) -
Fast Detection of Defective Insulator Based on Improved YOLOv5s
por: Liquan, Zhao, et al.
Publicado: (2022)