Cargando…

Epidemic monitoring in real-time based on dynamic grid search and Monte Carlo numerical simulation algorithm

Building upon the foundational principles of the grid search algorithm and Monte Carlo numerical simulation, this article introduces an innovative epidemic monitoring and prevention plan. The plan offers the capability to accurately identify the sources of infectious diseases and predict the final s...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xin, Ning, Huijun, Guo, Liuwang, Diao, Dongming, Zhou, Xinru, Zhang, Xiaoliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403190/
https://www.ncbi.nlm.nih.gov/pubmed/37547412
http://dx.doi.org/10.7717/peerj-cs.1479
Descripción
Sumario:Building upon the foundational principles of the grid search algorithm and Monte Carlo numerical simulation, this article introduces an innovative epidemic monitoring and prevention plan. The plan offers the capability to accurately identify the sources of infectious diseases and predict the final scale and duration of the epidemic. The proposed plan is implemented in schools and society, utilizing computer simulation analysis. Through this analysis, the plan enables precise localization of infection sources for various demographic groups, with an error rate of less than 3%. Additionally, the plan allows for the estimation of the epidemic cycle duration, which typically spans around 14 days. Notably, higher population density enhances fault tolerance and prediction accuracy, resulting in smaller errors and more reliable simulation outcomes. Overall, this study provides highly valuable theoretical guidance for effective epidemic prevention and control efforts.