Cargando…

Robustness of privacy-preserving collaborative recommenders against popularity bias problem

Recommender systems have become increasingly important in today’s digital age, but they are not without their challenges. One of the most significant challenges is that users are not always willing to share their preferences due to privacy concerns, yet they still require decent recommendations. Pri...

Descripción completa

Detalles Bibliográficos
Autores principales: Gulsoy, Mert, Yalcin, Emre, Bilge, Alper
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403214/
https://www.ncbi.nlm.nih.gov/pubmed/37547423
http://dx.doi.org/10.7717/peerj-cs.1438
Descripción
Sumario:Recommender systems have become increasingly important in today’s digital age, but they are not without their challenges. One of the most significant challenges is that users are not always willing to share their preferences due to privacy concerns, yet they still require decent recommendations. Privacy-preserving collaborative recommenders remedy such concerns by letting users set their privacy preferences before submitting to the recommendation provider. Another recently discussed challenge is the problem of popularity bias, where the system tends to recommend popular items more often than less popular ones, limiting the diversity of recommendations and preventing users from discovering new and interesting items. In this article, we comprehensively analyze the randomized perturbation-based data disguising procedure of privacy-preserving collaborative recommender algorithms against the popularity bias problem. For this purpose, we construct user personas of varying privacy protection levels and scrutinize the performance of ten recommendation algorithms on these user personas regarding the accuracy and beyond-accuracy perspectives. We also investigate how well-known popularity-debiasing strategies combat the issue in privacy-preserving environments. In experiments, we employ three well-known real-world datasets. The key findings of our analysis reveal that privacy-sensitive users receive unbiased and fairer recommendations that are qualified in diversity, novelty, and catalogue coverage perspectives in exchange for tolerable sacrifice from accuracy. Also, prominent popularity-debiasing strategies fall considerably short as provided privacy level improves.