Cargando…
Robustness of privacy-preserving collaborative recommenders against popularity bias problem
Recommender systems have become increasingly important in today’s digital age, but they are not without their challenges. One of the most significant challenges is that users are not always willing to share their preferences due to privacy concerns, yet they still require decent recommendations. Pri...
Autores principales: | Gulsoy, Mert, Yalcin, Emre, Bilge, Alper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403214/ https://www.ncbi.nlm.nih.gov/pubmed/37547423 http://dx.doi.org/10.7717/peerj-cs.1438 |
Ejemplares similares
-
A Recommender for Research Collaborators Using Graph Neural Networks
por: Zhu, Jie, et al.
Publicado: (2022) -
AI Technologies, Privacy, and Security
por: Elliott, David, et al.
Publicado: (2022) -
Enhancing neural collaborative filtering using hybrid feature selection for recommendation
por: Drammeh, Baboucarr, et al.
Publicado: (2023) -
An Overview of Current Solutions for Privacy in the Internet of Things
por: Yang, Guang
Publicado: (2022) -
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis
por: Coyner, Aaron S., et al.
Publicado: (2022)