Cargando…
Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI
STUDY DESIGN: In vivo retrospective study of fully automatic quantitative imaging feature extraction from clinically acquired lumbar spine magnetic resonance imaging (MRI). OBJECTIVE: To demonstrate the feasibility of substituting automatic for human-demarcated segmentation of major anatomic structu...
Autores principales: | Hess, Madeline, Allaire, Brett, Gao, Kenneth T, Tibrewala, Radhika, Inamdar, Gaurav, Bharadwaj, Upasana, Chin, Cynthia, Pedoia, Valentina, Bouxsein, Mary, Anderson, Dennis, Majumdar, Sharmila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403305/ https://www.ncbi.nlm.nih.gov/pubmed/36315069 http://dx.doi.org/10.1093/pm/pnac142 |
Ejemplares similares
-
Automatic detection and voxel‐wise mapping of lumbar spine Modic changes with deep learning
por: Gao, Kenneth T., et al.
Publicado: (2022) -
Technology and Tool Development for BACPAC: Qualitative and Quantitative Analysis of Accelerated Lumbar Spine MRI with Deep-Learning Based Image Reconstruction at 3T
por: Han, Misung, et al.
Publicado: (2023) -
Magnetic Resonance Imaging of the Lumbar Spine: Recommendations for Acquisition and Image Evaluation from the BACPAC Spine Imaging Working Group
por: Sollmann, Nico, et al.
Publicado: (2022) -
Biomechanical Phenotyping of Chronic Low Back Pain: Protocol for BACPAC
por: Quirk, D Adam, et al.
Publicado: (2022) -
Lumbar intervertebral disc characterization through quantitative MRI analysis: An automatic voxel‐based relaxometry approach
por: Iriondo, Claudia, et al.
Publicado: (2020)