Cargando…

Single-cell Hi-C data enhancement with deep residual and generative adversarial networks

MOTIVATION: The spatial genome organization of a eukaryotic cell is important for its function. The development of single-cell technologies for probing the 3D genome conformation, especially single-cell chromosome conformation capture techniques, has enabled us to understand genome function better t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanli, Guo, Zhiye, Cheng, Jianlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403428/
https://www.ncbi.nlm.nih.gov/pubmed/37498561
http://dx.doi.org/10.1093/bioinformatics/btad458
Descripción
Sumario:MOTIVATION: The spatial genome organization of a eukaryotic cell is important for its function. The development of single-cell technologies for probing the 3D genome conformation, especially single-cell chromosome conformation capture techniques, has enabled us to understand genome function better than before. However, due to extreme sparsity and high noise associated with single-cell Hi-C data, it is still difficult to study genome structure and function using the HiC-data of one single cell. RESULTS: In this work, we developed a deep learning method ScHiCEDRN based on deep residual networks and generative adversarial networks for the imputation and enhancement of Hi-C data of a single cell. In terms of both image evaluation and Hi-C reproducibility metrics, ScHiCEDRN outperforms the four deep learning methods (DeepHiC, HiCPlus, HiCSR, and Loopenhance) on enhancing the raw single-cell Hi-C data of human and Drosophila. The experiments also show that it can generate single-cell Hi-C data more suitable for identifying topologically associating domain boundaries and reconstructing 3D chromosome structures than the existing methods. Moreover, ScHiCEDRN’s performance generalizes well across different single cells and cell types, and it can be applied to improving population Hi-C data. AVAILABILITY AND IMPLEMENTATION: The source code of ScHiCEDRN is available at the GitHub repository: https://github.com/BioinfoMachineLearning/ScHiCEDRN.