Cargando…
Single-cell Hi-C data enhancement with deep residual and generative adversarial networks
MOTIVATION: The spatial genome organization of a eukaryotic cell is important for its function. The development of single-cell technologies for probing the 3D genome conformation, especially single-cell chromosome conformation capture techniques, has enabled us to understand genome function better t...
Autores principales: | Wang, Yanli, Guo, Zhiye, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403428/ https://www.ncbi.nlm.nih.gov/pubmed/37498561 http://dx.doi.org/10.1093/bioinformatics/btad458 |
Ejemplares similares
-
DeepHiC: A generative adversarial network for enhancing Hi-C data resolution
por: Hong, Hao, et al.
Publicado: (2020) -
hicGAN infers super resolution Hi-C data with generative adversarial networks
por: Liu, Qiao, et al.
Publicado: (2019) -
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Correction to: DeepDist: real‑value inter‑residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
por: Highsmith, Max, et al.
Publicado: (2021)