Cargando…
Proteomic profiling across breast cancer cell lines and models
We performed quantitative proteomics on 60 human-derived breast cancer cell line models to a depth of ~13,000 proteins. The resulting high-throughput datasets were assessed for quality and reproducibility. We used the datasets to identify and characterize the subtypes of breast cancer and showed tha...
Autores principales: | Kalocsay, Marian, Berberich, Matthew J., Everley, Robert A., Nariya, Maulik K., Chung, Mirra, Gaudio, Benjamin, Victor, Chiara, Bradshaw, Gary A., Eisert, Robyn J., Hafner, Marc, Sorger, Peter K., Mills, Caitlin E., Subramanian, Kartik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403526/ https://www.ncbi.nlm.nih.gov/pubmed/37542042 http://dx.doi.org/10.1038/s41597-023-02355-0 |
Ejemplares similares
-
A dynamic view of the proteomic landscape during differentiation of ReNcell VM cells, an immortalized human neural progenitor line
por: Song, Yuyu, et al.
Publicado: (2019) -
Quantification of sensitivity and resistance of breast cancer cell lines to anti-cancer drugs using GR metrics
por: Hafner, Marc, et al.
Publicado: (2017) -
Multi omics analysis of fibrotic kidneys in two mouse models
por: Pavkovic, Mira, et al.
Publicado: (2019) -
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023) -
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023)