Cargando…
Machine-learning for the prediction of one-year seizure recurrence based on routine electroencephalography
Predicting seizure recurrence risk is critical to the diagnosis and management of epilepsy. Routine electroencephalography (EEG) is a cornerstone of the estimation of seizure recurrence risk. However, EEG interpretation relies on the visual identification of interictal epileptiform discharges (IEDs)...
Autores principales: | Lemoine, Émile, Toffa, Denahin, Pelletier-Mc Duff, Geneviève, Xu, An Qi, Jemel, Mezen, Tessier, Jean-Daniel, Lesage, Frédéric, Nguyen, Dang K., Bou Assi, Elie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403587/ https://www.ncbi.nlm.nih.gov/pubmed/37542101 http://dx.doi.org/10.1038/s41598-023-39799-8 |
Ejemplares similares
-
Computer-assisted analysis of routine electroencephalogram to identify hidden biomarkers of epilepsy: protocol for a systematic review
por: Lemoine, Émile, et al.
Publicado: (2023) -
Decrease in wearable-based nocturnal sleep efficiency precedes epileptic seizures
por: Gagliano, Laura, et al.
Publicado: (2023) -
Unexpected cardiorespiratory findings postictally and at rest weeks prior to SUDEP
por: Lamrani, Yassine, et al.
Publicado: (2023) -
Acute Effects of High-Frequency Insular Stimulation on Interictal Epileptiform Discharge Rates in Patients with Refractory Epilepsy
por: Tran, Thi Phuoc Yen, et al.
Publicado: (2022) -
Hemodynamic changes associated with common EEG patterns in critically ill patients: Pilot results from continuous EEG-fNIRS study
por: Kassab, Ali, et al.
Publicado: (2021)