Cargando…

Dataset of thermographic images for the detection of buried landmines

This article presents a dataset of thermographic images of terrain with antipersonnel mines to identify the presence or absence of these artifacts using machine learning and artificial vision techniques. The dataset has 2700 thermographic images acquired at different heights, using a Zenmuse XT infr...

Descripción completa

Detalles Bibliográficos
Autores principales: Tenorio-Tamayo, Hermes Alejandro, Forero-Ramírez, Juan Camilo, García, Bryan, Loaiza-Correa, Humberto, Restrepo-Girón, Andrés David, Nope-Rodríguez, Sandra Esperanza, Barandica-López, Asfur, Buitrago-Molina, José Tomás
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403701/
https://www.ncbi.nlm.nih.gov/pubmed/37547167
http://dx.doi.org/10.1016/j.dib.2023.109443
_version_ 1785085128302657536
author Tenorio-Tamayo, Hermes Alejandro
Forero-Ramírez, Juan Camilo
García, Bryan
Loaiza-Correa, Humberto
Restrepo-Girón, Andrés David
Nope-Rodríguez, Sandra Esperanza
Barandica-López, Asfur
Buitrago-Molina, José Tomás
author_facet Tenorio-Tamayo, Hermes Alejandro
Forero-Ramírez, Juan Camilo
García, Bryan
Loaiza-Correa, Humberto
Restrepo-Girón, Andrés David
Nope-Rodríguez, Sandra Esperanza
Barandica-López, Asfur
Buitrago-Molina, José Tomás
author_sort Tenorio-Tamayo, Hermes Alejandro
collection PubMed
description This article presents a dataset of thermographic images of terrain with antipersonnel mines to identify the presence or absence of these artifacts using machine learning and artificial vision techniques. The dataset has 2700 thermographic images acquired at different heights, using a Zenmuse XT infrared camera (7-13 µm), embedded in the DJI Matrice 100 drone. The data acquisition experiment consists of capturing aerial infrared images of a terrain where elements with characteristics similar to antipersonnel mines type legbreaker were buried. The mines were planted in the ground between 0 cm and 10 cm deep and were spread over an area of 10 m x 10 m. The drone used a flight protocol that set the trajectory, the time of the flight, the acquisition height, and the image sampling frequency. This dataset was used in “Detection of “legbreaker” antipersonnel landmines by analysis of aerial thermographic images of the soil” [7].
format Online
Article
Text
id pubmed-10403701
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104037012023-08-06 Dataset of thermographic images for the detection of buried landmines Tenorio-Tamayo, Hermes Alejandro Forero-Ramírez, Juan Camilo García, Bryan Loaiza-Correa, Humberto Restrepo-Girón, Andrés David Nope-Rodríguez, Sandra Esperanza Barandica-López, Asfur Buitrago-Molina, José Tomás Data Brief Data Article This article presents a dataset of thermographic images of terrain with antipersonnel mines to identify the presence or absence of these artifacts using machine learning and artificial vision techniques. The dataset has 2700 thermographic images acquired at different heights, using a Zenmuse XT infrared camera (7-13 µm), embedded in the DJI Matrice 100 drone. The data acquisition experiment consists of capturing aerial infrared images of a terrain where elements with characteristics similar to antipersonnel mines type legbreaker were buried. The mines were planted in the ground between 0 cm and 10 cm deep and were spread over an area of 10 m x 10 m. The drone used a flight protocol that set the trajectory, the time of the flight, the acquisition height, and the image sampling frequency. This dataset was used in “Detection of “legbreaker” antipersonnel landmines by analysis of aerial thermographic images of the soil” [7]. Elsevier 2023-07-24 /pmc/articles/PMC10403701/ /pubmed/37547167 http://dx.doi.org/10.1016/j.dib.2023.109443 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Tenorio-Tamayo, Hermes Alejandro
Forero-Ramírez, Juan Camilo
García, Bryan
Loaiza-Correa, Humberto
Restrepo-Girón, Andrés David
Nope-Rodríguez, Sandra Esperanza
Barandica-López, Asfur
Buitrago-Molina, José Tomás
Dataset of thermographic images for the detection of buried landmines
title Dataset of thermographic images for the detection of buried landmines
title_full Dataset of thermographic images for the detection of buried landmines
title_fullStr Dataset of thermographic images for the detection of buried landmines
title_full_unstemmed Dataset of thermographic images for the detection of buried landmines
title_short Dataset of thermographic images for the detection of buried landmines
title_sort dataset of thermographic images for the detection of buried landmines
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403701/
https://www.ncbi.nlm.nih.gov/pubmed/37547167
http://dx.doi.org/10.1016/j.dib.2023.109443
work_keys_str_mv AT tenoriotamayohermesalejandro datasetofthermographicimagesforthedetectionofburiedlandmines
AT foreroramirezjuancamilo datasetofthermographicimagesforthedetectionofburiedlandmines
AT garciabryan datasetofthermographicimagesforthedetectionofburiedlandmines
AT loaizacorreahumberto datasetofthermographicimagesforthedetectionofburiedlandmines
AT restrepogironandresdavid datasetofthermographicimagesforthedetectionofburiedlandmines
AT noperodriguezsandraesperanza datasetofthermographicimagesforthedetectionofburiedlandmines
AT barandicalopezasfur datasetofthermographicimagesforthedetectionofburiedlandmines
AT buitragomolinajosetomas datasetofthermographicimagesforthedetectionofburiedlandmines