Cargando…

Diagnostic Test Accuracy of Deep Learning Prediction Models on COVID-19 Severity: Systematic Review and Meta-Analysis

BACKGROUND: Deep learning (DL) prediction models hold great promise in the triage of COVID-19. OBJECTIVE: We aimed to evaluate the diagnostic test accuracy of DL prediction models for assessing and predicting the severity of COVID-19. METHODS: We searched PubMed, Scopus, LitCovid, Embase, Ovid, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Changyu, Liu, Siru, Tang, Yu, Yang, Hao, Liu, Jialin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403760/
https://www.ncbi.nlm.nih.gov/pubmed/37477951
http://dx.doi.org/10.2196/46340
Descripción
Sumario:BACKGROUND: Deep learning (DL) prediction models hold great promise in the triage of COVID-19. OBJECTIVE: We aimed to evaluate the diagnostic test accuracy of DL prediction models for assessing and predicting the severity of COVID-19. METHODS: We searched PubMed, Scopus, LitCovid, Embase, Ovid, and the Cochrane Library for studies published from December 1, 2019, to April 30, 2022. Studies that used DL prediction models to assess or predict COVID-19 severity were included, while those without diagnostic test accuracy analysis or severity dichotomies were excluded. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2), PROBAST (Prediction Model Risk of Bias Assessment Tool), and funnel plots were used to estimate the bias and applicability. RESULTS: A total of 12 retrospective studies involving 2006 patients reported the cross-sectionally assessed value of DL on COVID-19 severity. The pooled sensitivity and area under the curve were 0.92 (95% CI 0.89-0.94; I(2)=0.00%) and 0.95 (95% CI 0.92-0.96), respectively. A total of 13 retrospective studies involving 3951 patients reported the longitudinal predictive value of DL for disease severity. The pooled sensitivity and area under the curve were 0.76 (95% CI 0.74-0.79; I(2)=0.00%) and 0.80 (95% CI 0.76-0.83), respectively. CONCLUSIONS: DL prediction models can help clinicians identify potentially severe cases for early triage. However, high-quality research is lacking. TRIAL REGISTRATION: PROSPERO CRD42022329252; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD 42022329252