Cargando…
Diagnostic Test Accuracy of Deep Learning Prediction Models on COVID-19 Severity: Systematic Review and Meta-Analysis
BACKGROUND: Deep learning (DL) prediction models hold great promise in the triage of COVID-19. OBJECTIVE: We aimed to evaluate the diagnostic test accuracy of DL prediction models for assessing and predicting the severity of COVID-19. METHODS: We searched PubMed, Scopus, LitCovid, Embase, Ovid, and...
Autores principales: | Wang, Changyu, Liu, Siru, Tang, Yu, Yang, Hao, Liu, Jialin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403760/ https://www.ncbi.nlm.nih.gov/pubmed/37477951 http://dx.doi.org/10.2196/46340 |
Ejemplares similares
-
Risk factors for mortality among lung cancer patients with covid-19 infection: A systematic review and meta-analysis
por: Wu, Mingyue, et al.
Publicado: (2023) -
Diagnostic Test Accuracy of Deep Learning Detection of COVID-19: A Systematic Review and Meta-Analysis
por: Komolafe, Temitope Emmanuel, et al.
Publicado: (2021) -
Utility of ChatGPT in Clinical Practice
por: Liu, Jialin, et al.
Publicado: (2023) -
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
por: Fleuren, Lucas M., et al.
Publicado: (2020) -
Deep learning for detection of age-related macular degeneration: A systematic review and meta-analysis of diagnostic test accuracy studies
por: Leng, Xiangjie, et al.
Publicado: (2023)