Cargando…
Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning
We present RBPNet, a novel deep learning method, which predicts CLIP-seq crosslink count distribution from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet achieves high generalization on eCLIP, iCLIP and miCLIP assays, outperforming state-of-the-art class...
Autores principales: | Horlacher, Marc, Wagner, Nils, Moyon, Lambert, Kuret, Klara, Goedert, Nicolas, Salvatore, Marco, Ule, Jernej, Gagneur, Julien, Winther, Ole, Marsico, Annalisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403857/ https://www.ncbi.nlm.nih.gov/pubmed/37542318 http://dx.doi.org/10.1186/s13059-023-03015-7 |
Ejemplares similares
-
PureCLIP: capturing target-specific protein–RNA interaction footprints from single-nucleotide CLIP-seq data
por: Krakau, Sabrina, et al.
Publicado: (2017) -
Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions
por: Sugimoto, Yoichiro, et al.
Publicado: (2012) -
A systematic benchmark of machine learning methods for protein–RNA interaction prediction
por: Horlacher, Marc, et al.
Publicado: (2023) -
Positional motif analysis reveals the extent of specificity of protein-RNA interactions observed by CLIP
por: Kuret, Klara, et al.
Publicado: (2022) -
Transfer learning identifies sequence determinants of cell-type specific regulatory element accessibility
por: Salvatore, Marco, et al.
Publicado: (2023)