Cargando…
Genetic descriptor search algorithm for predicting hydrogen adsorption free energy of 2D material
Transition metal dichalcogenides (TMDs) have emerged as a promising alternative to noble metals in the field of electrocatalysts for the hydrogen evolution reaction. However, previous attempts using machine learning to predict TMD properties, such as catalytic activity, have been shown to have limit...
Autores principales: | Lee, Jaehwan, Shin, Seokwon, Lee, Jaeho, Han, Young-Kyu, Lee, Woojin, Son, Youngdoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404247/ https://www.ncbi.nlm.nih.gov/pubmed/37543706 http://dx.doi.org/10.1038/s41598-023-39696-0 |
Ejemplares similares
-
The hydrogen evolution reaction: from material to interfacial descriptors
por: Dubouis, Nicolas, et al.
Publicado: (2019) -
Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography
por: Choi, Eunhye, et al.
Publicado: (2022) -
Materials Screening
by the Descriptor G(max)(η): The Free-Energy
Span Model in Electrocatalysis
por: Razzaq, Samad, et al.
Publicado: (2023) -
Adsorption and
Absorption Energies of Hydrogen with
Palladium
por: Schwarzer, Michael, et al.
Publicado: (2022) -
An Optimized Framework for Energy-Resource Allocation in a Cloud Environment based on the Whale Optimization Algorithm
por: Goyal, Shanky, et al.
Publicado: (2021)