Cargando…
Self-supervised learning with application for infant cerebellum segmentation and analysis
Accurate tissue segmentation is critical to characterize early cerebellar development in the first two postnatal years. However, challenges in tissue segmentation arising from tightly-folded cortex, low and dynamic tissue contrast, and large inter-site data heterogeneity have limited our understandi...
Autores principales: | Sun, Yue, Wang, Limei, Gao, Kun, Ying, Shihui, Lin, Weili, Humphreys, Kathryn L., Li, Gang, Niu, Sijie, Liu, Mingxia, Wang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404262/ https://www.ncbi.nlm.nih.gov/pubmed/37543620 http://dx.doi.org/10.1038/s41467-023-40446-z |
Ejemplares similares
-
Prediction signals in the cerebellum: Beyond supervised motor learning
por: Hull, Court
Publicado: (2020) -
Bayesian supervised learning and state estimation in a model of the cerebellum
por: Campbell, Benjamin
Publicado: (2015) -
Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation
por: Putri, Wenny Ramadha, et al.
Publicado: (2022) -
Self-supervised machine learning for live cell imagery segmentation
por: Robitaille, Michael C., et al.
Publicado: (2022) -
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023)