Cargando…

Multi-PGS enhances polygenic prediction by combining 937 polygenic scores

The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes...

Descripción completa

Detalles Bibliográficos
Autores principales: Albiñana, Clara, Zhu, Zhihong, Schork, Andrew J., Ingason, Andrés, Aschard, Hugues, Brikell, Isabell, Bulik, Cynthia M., Petersen, Liselotte V., Agerbo, Esben, Grove, Jakob, Nordentoft, Merete, Hougaard, David M., Werge, Thomas, Børglum, Anders D., Mortensen, Preben Bo, McGrath, John J., Neale, Benjamin M., Privé, Florian, Vilhjálmsson, Bjarni J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404269/
https://www.ncbi.nlm.nih.gov/pubmed/37543680
http://dx.doi.org/10.1038/s41467-023-40330-w
_version_ 1785085261678379008
author Albiñana, Clara
Zhu, Zhihong
Schork, Andrew J.
Ingason, Andrés
Aschard, Hugues
Brikell, Isabell
Bulik, Cynthia M.
Petersen, Liselotte V.
Agerbo, Esben
Grove, Jakob
Nordentoft, Merete
Hougaard, David M.
Werge, Thomas
Børglum, Anders D.
Mortensen, Preben Bo
McGrath, John J.
Neale, Benjamin M.
Privé, Florian
Vilhjálmsson, Bjarni J.
author_facet Albiñana, Clara
Zhu, Zhihong
Schork, Andrew J.
Ingason, Andrés
Aschard, Hugues
Brikell, Isabell
Bulik, Cynthia M.
Petersen, Liselotte V.
Agerbo, Esben
Grove, Jakob
Nordentoft, Merete
Hougaard, David M.
Werge, Thomas
Børglum, Anders D.
Mortensen, Preben Bo
McGrath, John J.
Neale, Benjamin M.
Privé, Florian
Vilhjálmsson, Bjarni J.
author_sort Albiñana, Clara
collection PubMed
description The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R(2) increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
format Online
Article
Text
id pubmed-10404269
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104042692023-08-07 Multi-PGS enhances polygenic prediction by combining 937 polygenic scores Albiñana, Clara Zhu, Zhihong Schork, Andrew J. Ingason, Andrés Aschard, Hugues Brikell, Isabell Bulik, Cynthia M. Petersen, Liselotte V. Agerbo, Esben Grove, Jakob Nordentoft, Merete Hougaard, David M. Werge, Thomas Børglum, Anders D. Mortensen, Preben Bo McGrath, John J. Neale, Benjamin M. Privé, Florian Vilhjálmsson, Bjarni J. Nat Commun Article The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R(2) increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks. Nature Publishing Group UK 2023-08-05 /pmc/articles/PMC10404269/ /pubmed/37543680 http://dx.doi.org/10.1038/s41467-023-40330-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Albiñana, Clara
Zhu, Zhihong
Schork, Andrew J.
Ingason, Andrés
Aschard, Hugues
Brikell, Isabell
Bulik, Cynthia M.
Petersen, Liselotte V.
Agerbo, Esben
Grove, Jakob
Nordentoft, Merete
Hougaard, David M.
Werge, Thomas
Børglum, Anders D.
Mortensen, Preben Bo
McGrath, John J.
Neale, Benjamin M.
Privé, Florian
Vilhjálmsson, Bjarni J.
Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
title Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
title_full Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
title_fullStr Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
title_full_unstemmed Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
title_short Multi-PGS enhances polygenic prediction by combining 937 polygenic scores
title_sort multi-pgs enhances polygenic prediction by combining 937 polygenic scores
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404269/
https://www.ncbi.nlm.nih.gov/pubmed/37543680
http://dx.doi.org/10.1038/s41467-023-40330-w
work_keys_str_mv AT albinanaclara multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT zhuzhihong multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT schorkandrewj multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT ingasonandres multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT aschardhugues multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT brikellisabell multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT bulikcynthiam multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT petersenliselottev multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT agerboesben multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT grovejakob multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT nordentoftmerete multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT hougaarddavidm multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT wergethomas multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT børglumandersd multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT mortensenprebenbo multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT mcgrathjohnj multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT nealebenjaminm multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT priveflorian multipgsenhancespolygenicpredictionbycombining937polygenicscores
AT vilhjalmssonbjarnij multipgsenhancespolygenicpredictionbycombining937polygenicscores