Cargando…
A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics
Complex computer codes are frequently used in engineering to generate outputs based on inputs, which can make it difficult for designers to understand the relationship between inputs and outputs and to determine the best input values. One solution to this issue is to use design of experiments (DOE)...
Autores principales: | Mukhtar, Azfarizal, Yasir, Ahmad Shah Hizam Md, Nasir, Mohamad Fariz Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405017/ https://www.ncbi.nlm.nih.gov/pubmed/37554836 http://dx.doi.org/10.1016/j.heliyon.2023.e18674 |
Ejemplares similares
-
Machine learning based on computational fluid dynamics enables geometric design optimisation of the NeoVAD blades
por: Nissim, Lee, et al.
Publicado: (2023) -
Optimisation and Efficiency Improvement of Electric Vehicles Using Computational Fluid Dynamics Modelling
por: Afianto, Darryl, et al.
Publicado: (2022) -
Optimisation of a Novel Spiral-Inducing Bypass Graft Using Computational Fluid Dynamics
por: Ruiz-Soler, Andres, et al.
Publicado: (2017) -
Machine learning–accelerated computational fluid dynamics
por: Kochkov, Dmitrii, et al.
Publicado: (2021) -
Computational fluid dynamics in ventilation design
por: Nielsen, Peter V, et al.
Publicado: (2007)