Cargando…
Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs
Organic light-emitting diodes (OLEDs) are considered one of the most promising new display technologies owing to their advantages, such as all-solid-state, high color gamut, and wide viewing angle. However, in terms of special fields, the brightness, lifetime, and stability of the devices need furth...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405046/ https://www.ncbi.nlm.nih.gov/pubmed/37555095 http://dx.doi.org/10.1039/d3ra03608a |
_version_ | 1785085436212805632 |
---|---|
author | Song, Jiayi Wang, Cheng Guan, Yunxia Bao, Xi Li, Wan Jiao Chen, Lijia Niu, Lianbin |
author_facet | Song, Jiayi Wang, Cheng Guan, Yunxia Bao, Xi Li, Wan Jiao Chen, Lijia Niu, Lianbin |
author_sort | Song, Jiayi |
collection | PubMed |
description | Organic light-emitting diodes (OLEDs) are considered one of the most promising new display technologies owing to their advantages, such as all-solid-state, high color gamut, and wide viewing angle. However, in terms of special fields, the brightness, lifetime, and stability of the devices need further improvement. Therefore, heterojunction devices with different concentrations were prepared to regulate device brightness. The brightness of the bulk heterojunction device is enhanced by 9740 cd m(−2), with a growth rate of about 26.8%. The impact of various temperatures and various exciton concentrations on the device magneto-conductance (MC) and magneto-electroluminescence (MEL) was investigated. Experimental results demonstrate that the exciton concentration inside the device can be tuned to improve optoelectronic properties and organic magnetic effects. The complex spin mixing process inside the bulk heterojunction device is deeply investigated, which provides a reliable basis for the design of bulk heterojunction devices. |
format | Online Article Text |
id | pubmed-10405046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104050462023-08-08 Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs Song, Jiayi Wang, Cheng Guan, Yunxia Bao, Xi Li, Wan Jiao Chen, Lijia Niu, Lianbin RSC Adv Chemistry Organic light-emitting diodes (OLEDs) are considered one of the most promising new display technologies owing to their advantages, such as all-solid-state, high color gamut, and wide viewing angle. However, in terms of special fields, the brightness, lifetime, and stability of the devices need further improvement. Therefore, heterojunction devices with different concentrations were prepared to regulate device brightness. The brightness of the bulk heterojunction device is enhanced by 9740 cd m(−2), with a growth rate of about 26.8%. The impact of various temperatures and various exciton concentrations on the device magneto-conductance (MC) and magneto-electroluminescence (MEL) was investigated. Experimental results demonstrate that the exciton concentration inside the device can be tuned to improve optoelectronic properties and organic magnetic effects. The complex spin mixing process inside the bulk heterojunction device is deeply investigated, which provides a reliable basis for the design of bulk heterojunction devices. The Royal Society of Chemistry 2023-08-07 /pmc/articles/PMC10405046/ /pubmed/37555095 http://dx.doi.org/10.1039/d3ra03608a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Song, Jiayi Wang, Cheng Guan, Yunxia Bao, Xi Li, Wan Jiao Chen, Lijia Niu, Lianbin Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs |
title | Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs |
title_full | Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs |
title_fullStr | Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs |
title_full_unstemmed | Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs |
title_short | Mediation of exciton concentration on magnetic field effects in NPB : Alq(3)-based heterojunction OLEDs |
title_sort | mediation of exciton concentration on magnetic field effects in npb : alq(3)-based heterojunction oleds |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405046/ https://www.ncbi.nlm.nih.gov/pubmed/37555095 http://dx.doi.org/10.1039/d3ra03608a |
work_keys_str_mv | AT songjiayi mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds AT wangcheng mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds AT guanyunxia mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds AT baoxi mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds AT liwanjiao mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds AT chenlijia mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds AT niulianbin mediationofexcitonconcentrationonmagneticfieldeffectsinnpbalq3basedheterojunctionoleds |